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ABSTRACT

MODERN speech communications are evolving towards a new di-
rection which involves users in a more perceptive way. That is
the immersive experience, which may be considered as the “last-

mile” problem of telecommunications.

One of the main feature of immersive communications is the distant-talking,
i.e. the hands-free (in the broad sense) speech communications without body-
worn or tethered microphones that takes place in a multisource environment
where interfering signals may degrade the communication quality and the
intelligibility of the desired speech source.

In order to preserve speech quality intelligent acoustic interfaces may be
used. An intelligent acoustic interface may comprise multiple microphones
and loudspeakers and its peculiarity is to model the acoustic channel in order
to adapt to user requirements and to environment conditions. This is the
reason why intelligent acoustic interfaces are based on adaptive filtering
algorithms.

The acoustic path modelling entails a set of problems which have to be
taken into account in designing an adaptive filtering algorithm. Such problems
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ABSTRACT

may be basically generated by a linear or a nonlinear process and can be
tackled respectively by linear or nonlinear adaptive algorithms.

In this work we consider such modelling problems and we propose novel
effective adaptive algorithms that allow acoustic interfaces to be robust against
any interfering signals, thus preserving the perceived quality of desired speech
signals.

As regards linear adaptive algorithms, a class of adaptive filters based on the
sparse nature of the acoustic impulse response has been recently proposed.
We adopt such class of adaptive filters, named proportionate adaptive filters,
and derive a general framework from which it is possible to derive any linear
adaptive algorithm. Using such framework we also propose some efficient
proportionate adaptive algorithms, expressly designed to tackle problems of a
linear nature.

On the other side, in order to address problems deriving from a nonlinear
process, we propose a novel filtering model which performs a nonlinear
transformations by means of functional links. Using such nonlinear model, we
propose functional link adaptive filters which provide an efficient solution to the
modelling of a nonlinear acoustic channel.

Finally, we introduce robust filtering architectures based on adaptive com-
binations of filters that allow acoustic interfaces to more effectively adapt to
environment conditions, thus providing a powerful mean to immersive speech
communications.
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PART I

INTRODUCTION

—My work consists of two parts: of the one which is here,
and of everything which I have not written.

And precisely this second part is the important one.
Ludwig Wittgenstein
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1
INTRODUCTION AND OUTLINE

Contents
1.1 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Scope of the work . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.1 MOTIVATIONS

Intelligent acoustic interfaces (IAIs) for hands-free speech communica-
tions are based on the modelling of acoustic paths and on the perception of
complex sounds. In the development of such communication systems, many
research areas intersect and cross-feed themselves, among which are: noise
reduction, speech enhancement, acoustic echo cancellation, nonlinear channel
modelling, multichannel acoustic modelling, source localization and tracking,
blind source separation.
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1.1. Motivations

In such research context, matter of primary importance is the study of
adaptive filtering algorithms and architectures [120]. Capabilities of such
filtering structures to adapt to acoustic environments is that makes an acous-
tic interface intelligent. Moreover, adaptive filter performance bears on the
quality of processed acoustic signals.

Among the foremost acoustic applications in which adaptive filtering
plays a leading role are those on acoustic channel modelling, such as acoustic
echo cancellation (AEC). The phenomenon of acoustic echo occurs when a
delayed (and possibly distorted) version of the speech signal reproduced by a
loudspeaker is acquired by a microphone and reflected back to remote user.
An acoustic echo canceller aims at estimating the acoustic impulse response
(AIR), i.e. modelling the acoustic path, in order to subtract the estimated echo
signal from the microphone signal.

Therefore, the acoustic channel modelling represents an exhaustive issue in
hands-free speech communications since it includes a set of problems common
to the whole sector of acoustic scene analysis: the estimate of the impulse
response, the presence of nonstationary elements in the environment, the
presence of unwanted interfering signals, the presence of nonlinearities [12].
Such phenomena strongly degrade the perceived quality of the speech signal
and might be tackled using signal processing techniques, that are pivotal in
restoring the perceived intelligibility in a speech communication. This is the
reason why the proposed research work mainly deals with applications on
acoustic channel modelling, and in particular on AEC, in order to develop
novel adaptive filtering techniques, which might also be used in other distant-
talking applications.

Regarding the research in AEC, significant advances were achieved in the
linear case, in which capabilities of adaptive filters have been exploited in
order to model AIRs at best. In that sense significant results have been recently
achieved for applications in hands-free speech communication in reverberant
environments and in presence of interfering signals [12, 100], factors that
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cannot be neglected in immersive communications. However, similar results
have not been reached yet in the nonlinear case.

The nonlinear case is characterized by the presence of distortions in the
acoustic path that are funneled in the echo signal and cause a performance
decrease and an even worse decrease of the perceived quality of informa-
tion. Nonlinearities very often occur in acoustic applications since they are
generated by loudspeakers or by the vibrations of audio devices’ enclosures
[147]. Therefore, nowadays, it is difficult to disregard echo cancellers that take
into account nonlinearities, also due to a large spreading of low-cost audio
devices, thus having low-quality electronic components and materials which
may introduce even strong distortions.

Among the most popular nonlinear acoustic echo cancellers of recent years,
stand out those based on adaptive Volterra filters [138, 23]. However, such
nonlinear acoustic echo cancellers involve computational costs that are defi-
nitely larger than conventional echo cancellers (i.e. linear echo cancellers) and,
moreover, they may provide worse performance compared to the last ones.
That affects also the strategies of many companies that provide teleconferenc-
ing services, which often choose to drop the use of nonlinear echo cancellers
even at the expense of communication quality. On the other side, these are
also the main motivations that underpin the proposed research project.

1.2 SCOPE OF THE WORK

The development of adaptive algorithms for intelligent acoustic interfaces
is based on high-complexity scenarios which take into account several phe-
nomena that may degrade the speech intelligibility in a hands-free speech
communication. We start from an analysis of such interfering phenomena
that may be essentially labelled as linear or nonlinear events. Such division
allows to design ad hoc adaptive algorithms, thus making acoustic intelligent
interfaces robust against interfering signals.

Regarding the acoustic channel modelling in the linear case it is sufficient
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to investigate about adaptive models that are statistically robust. However, in
order to recreate accurately an acoustic scene free from any interference, noise
and unwanted signals, it is advisable to perform a nonlinear processing of
acquired information that is able to learn from the environment in a supervised
or unsupervised way. In both the cases, linear and nonlinear, automatic
learning and continuous adaptivity are fundamental elements to satisfy quality
requirements of speech communication [12].

In order to tackle linear interfering signals, we deal with a recently pro-
posed filtering technique that is based on proportionate adaptive filters [100].
This family of algorithms exploits sparsity constraints that are typical of AIRs,
thus yielding a performance improvement which is able to reduce the limits
posed by acoustic environments. The investigation about such family of algo-
rithms bears to the formulation of a framework for the derivation of (linear)
adaptive filters and to the development of efficient proportionate adaptive
algorithms for immersive speech communication.

On the other side, in order to tackle nonlinearities in acoustic channel
modelling, we propose a novel nonlinear filtering model based on functional
links. From such nonlinear model we develop some algorithms and architec-
tures on purpose of nonlinear acoustic echo cancellation (NAEC). The main idea
which underpins such functional link adaptive filters is that of estimating and
modelling nonlinearities introduced in the echo path by the environment and
interfering sources, and then cancelling them, thus improving the perceived
quality of acoustic information.

Moreover, both in linear and nonlinear cases, the proposed adaptive al-
gorithms are used to form more complex filtering architectures based on the
adaptive combination of filters. Such architectures result more robust against
several kinds of adverse environment conditions compared to conventional
filtering techniques.
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1.3 ORGANIZATION

The proposed research project is structured in three main parts: the first
one dealing with linear adaptive algorithms, the second one with nonlinear
adaptive algorithms and the last one dealing with robust filtering architectures.
An introducing part is also added at the beginning of the work, as well as a
conclusive part is added at the end. In detail, this dissertation is organized as
follows:

Part I introduces some preliminary basics.

Chapter 1 describes the motivation and the scope of our proposal.

Chapter 2 introduces intelligent acoustic interfaces and their applica-
tion in immersive speech communications.

Chapter 3 explains the formulation of main problems in hands-free
speech communications that we aim at tackling with adaptive algo-
rithms.

Part II deals with adaptive algorithms designed to address those problems
classified as linear.

Chapter 4 introduces a brief view on the theory of adaptive filtering.

Chapter 5 introduces proportionate adaptive algorithms according to
the proposed general framework.

Chapter 6 describes by means of simulations the most important fea-
tures of the proportionate adaptive algorithms introduced in the
previous chapter.

Part III deals with adaptive algorithms designed to tackle the presence of
nonlinearities in the acoustic channel.

Chapter 7 formulates the problem of nonlinearities which cause an
important limitation to the achievable speech quality.

7
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Chapter 8 introduces a new class of nonlinear algorithms, the functional
link adaptive filters, whose structure is based on Hammerstein
model.

Chapter 9 describes some variants of functional link adaptive filters
properly designed for nonlinear acoustic echo cancellation.

Part IV introduces more complex architectures based on adaptive combina-
tion of filters to increase robustness against adverse acoustic environ-
ments.

Chapter 10 introduces intelligent circuits based on the adaptive combi-
nation of filters.

Chapter 11 describes combined architectures for speech enhancement
in multisource environments.

Chapter 12 describes collaborative architectures for nonlinear acoustic
echo cancellation.

Part V draws our conclusions.

Chapter 13 concludes the work and introduces possible future perspec-
tives.

1.4 NOTATION

In this dissertation, matrices are represented by boldface capital letters and
vectors are denoted by boldface lowercase letters. Time-varying vectors and
matrices show discrete-time index as a subscript index, while in time-varying
scalar elements the time index is denoted in square brackets. A regression

vector is represented as xn ∈ RM =
[
x [n] x [n− 1] . . . x [n−M + 1]

]T
,

where M is the overall vector length and x [n− i] is individual entry at the
generic time instant n−i. On the other side, a snap-shot vector, which includes
a number Q of different contributions at n-th time instant, is represented as
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y [n] ∈ RQ =
[
y0 [n] y1 [n] . . . yQ−1 [n]

]T
. However, a generic coefficient

vector, in which all elements depend on the same time instant, is denoted

as wn ∈ RM =
[
w0 [n] w1 [n] . . . wM−1 [n]

]T
, where wi [n] is the generic

i-th individual entry at n-th time instant. When the coefficient vector is a
realization of a time-invariant process the time index is omitted. All vectors
are represented as column vectors.
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2.1. What is an intelligent acoustic interface?

2.1 WHAT IS AN INTELLIGENT ACOUSTIC
INTERFACE?

In order to formulate a comprehensive definition for the term “intelligent
acoustic interface” (IAI), it is necessary first to know what an acoustic interface
is and what makes an acoustic interface.

2.1.1 Acoustic interfaces

An acoustic interface provides a means to exchange acoustic information
between two or more entities through an acoustic signal processing. More
exactly, an acoustic interface is the front-end of a processing system of audio
and speech signals aiming at the extraction and the reproduction of acoustic
information. An acoustic interface is generally composed of a microphone
array and one or more loudspeakers, as depicted in Fig. 2.1.

To control noise, reverberation, and competing speech, microphone array
systems are generally more powerful than a single microphone [45]. Based
on how the microphones are arranged, these systems have two basic forms:
organized and distributed arrays [66]. In an organized array, the sensors are
arranged to form a particular geometry (such as a line, a circle, or a sphere)
in which each sensor’s position with reference to a common point is known.
These sensors spatially sample the sound field and are required to have the
same sensitivity. In comparison, a distributed array consists of randomly placed

Microphone ArrayLoudspeaker Loudspeaker

Fig. 2.1: An acoustic interface.
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microphones. It offers the advantage of logistic convenience during installa-
tion and later operations. Typically, distributed arrays have a large number of
elements forming a large sensor network. The microphone positions and the
pattern of the array are usually not known, and a uniform response among
the microphones cannot be presumed beforehand.

2.1.2 The “intelligence” in interfaces

“Intelligence” is not an easy term to define. What makes a system in-
telligent? In intelligent interfaces, the “intelligence” might be in predicting
what the user wants to do, and presenting information with this prediction
in mind [61]. Intelligent interfaces can also make doing a task more intuitive
and helpful. Instead of trudging along a task in the mire of an inefficient and
clumsy interface, the user might find a helpful and information-using interface
to be more intelligent. Thus, “intelligence” does not actually mean cognition
in this context; instead, it means using information in an appropriate manner
[61, 87].

“Intelligence” in interfacing is a subjective term. One person may look
at a system with context-sensitive help and say that the system seems smart;
another person might look at the same system and see nothing special about
it. In a sense, “intelligence” in interfaces might be defined as “the next best
thing” [61]. Once we have a system which one would say is intelligent, the
novelty of the system wears off, and people are in search for more intelligent
interfaces. “Intelligence” is that goal which is always one step ahead of us;
once we conquer it, it is no longer intelligence.

Interfaces can be intelligent about the user. Through the use of a user
model, the system can tailor communication (both input and output) to the
user [61]. Examples of tailored communications include methods of com-
municating (voice, visual, tactile) and way of presenting data (graph, chart,
multimedia messages). The interface can also be sensitive to the wants and
needs of the user. This ties closely with the user model, but it deals more with
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interface adaptability than outright use of models.

2.1.3 Human-machine interaction by intelligent acoustic
interfaces

The Association for Computing Machinery defines human-machine interaction
as “a discipline concerned with the design, evaluation and implementation
of interactive computing systems for human use and with the study of major
phenomena surrounding them” [62]. An important role in human-machine
interaction is played by intelligent acoustic interfaces (IAIs). An IAI translates
acoustic information from user to computer, and vice versa, in order to allow
an homogeneous interaction between parties. From the user point of view,
an IAI should be as invisible and intuitive as possible: working with and
understanding an IAI should not be a task so that the user should be able to
concentrate on the task which he is to perform.

An IAI must be able to adapt to user, to acquire and process information
from user, to understand user requirements, to give user an answer satisfying
his demands disguised as natural language or multimedia message. Moreover,
once information has been acquired, an IAI must be able to autonomously
decide whether the user needs an answer or not. In many cases, an IAI must
learn user behaviour, mood and personality in order to yield an answer being
as compliant as possible to user needs.

2.1.4 Applications using intelligent acoustic interfaces

IAIs are widely used in several fields of application, as also confirmed by
the scientific and technological state of the art.

In the multimedia sector it is possible to think to applications such that:
speech/audio real-time interaction [68]; speech automatic analysis, automatic
music composition and transcription [15]; automatic genre and context recog-
nition in broadcast programs [145]; high-interactivity entertainment [31], a
sector that has viewed a growing interest also due to emerging videogame
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technologies.

In domotics IAIs may be employed in the following applications: the devel-
opment of “intelligent rooms”, in which speakers and speech commands must
be recognized [142]; advanced anthropomorphic robotics [133]; integration
with videosurveillance systems [33], that provide, in an automatic way, event
identification, audio/video zoom in the region where the event is detected,
and the consequent activation of an alarm or any other action related to the
identified event.

Moreover, it is possible to exploits IAIs to develop aid systems for disabled
people, that may be hearing aids or even devices able to provide an accurate
reconstruction of an acoustic environment [122, 89].

2.2 SCIENCE AND TECHNOLOGY OF
INTELLIGENT ACOUSTIC INTERFACES

2.2.1 Historical background on speech communications

Before the invention of electromagnetic telephones, there were mechanical
devices for transmitting spoken words over a greater distance than that of
normal speech. The very earliest mechanical telephones were based on sound
transmission through pipes or other physical media (see Fig. 2.2). Speaking
tubes long remained common, including a lengthy history of use aboard ships,
and can still be found today.

The telephone emerged from the creation of, and successive improvements
to the electrical telegraph. In 1804 Catalan polymath and scientist Francisco
Salvá i Campillo constructed an electrochemical telegraph. An electromagnetic
telegraph was created by Baron Schilling in 1832.

The first commercial electrical telegraph was constructed by Sir William
Fothergill Cooke and entered use on the Great Western Railway in England.
It ran for 13 miles from Paddington station to West Drayton and came into
operation on April 9, 1839.
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Fig. 2.2: The tin can telephone, or also known as lover’s phone, connected two diaphragms
with a taut string or wire, which transmitted sound by mechanical vibrations from one to the
other along the wire.

During the second half of the 19th century inventors tried to find ways
of sending multiple telegraph messages simultaneously over a single tele-
graph wire by using different modulated audio frequencies for each message.
These inventors included Charles Bourseul, Thomas Edison, Elisha Gray, and
Alexander Graham Bell. Their efforts to develop acoustic telegraphy in order to
significantly reduce the cost of telegraph messages led directly to the invention
of the telephone, or the speaking telegraph.

The commercial use of the telephone started in 1876 [57]. This was one
year after Alexander Graham Bell filed a patent application for a telephone
apparatus. Efforts to transmit voice by electric circuits, however, date further
back. Already in 1854 Charles Bourseul described a transmission method.
Antonio Meucci set up a telephone system in his home in 1855. Philipp Reis
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demonstrated his telephone in 1861. One has also to mention Elisha Gray who
tragically filed his patent application for a telephone just 2 hours later than
Alexander Graham Bell.

In the very early days of the telephone conducting a phone call meant to
have both hands busy; one was occupied to hold the loudspeaker close to the
ear and the other hand to position the microphone in front of the mouth. This
troublesome way of operation was due to the lack of efficient electroacoustic
converters and amplifiers. The inconvenience, however, guaranteed optimal
conditions: a high signal-to-(environmental) noise ratio at the microphone
input, a perfect coupling between loudspeaker and the ear of the listener,
and - last but not least - a high attenuation between the loudspeaker and the
microphone. The designers of modern speech communication systems still
dream of getting back those conditions [57].

In a first step one hand had been freed by mounting the telephone device,
including the microphone at a wall; further on, only one hand was busy
holding the loudspeaker. In a next step the microphone and the loudspeaker
were combined in a handset. Thus, still one hand was engaged. This basically
remained the state of the art until today [57].

Early attempts to allow telephone calls with a loudspeaker and a micro-
phone at some distance in front of the user had to use analog circuits. In 1957
Bell System introduced a so called speakerphone. At the same time, however,
the telephone connection degraded to a half-duplex loop making natural con-
versations difficult. The introduction of a “center clipper” may be considered
as a last step along this line [16]. This nonlinear device suppresses small am-
plitudes. Thus, it extinguishes small echoes. Moreover, small speech signals
are erased, as well [57].

The invention of the least mean square algorithm in 1960 [153], the appli-
cation of adaptive transversal filters [79, 130] and the availability of digital
circuits with increasing processing power opened new paths to acoustic echo
and noise control [57]. It took at least two more decades of breathtaking
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progress in digital technology until commercial applications of adaptive filters
for acoustic echo and noise control became feasible.

Modern technologies are evolving towards new directions which take into
account the distant-talking, i.e. the hands-free speech communication using
intelligent acoustic interfaces. However, this change involves new challenging
problems to address, as we see throughout this dissertation.

2.2.2 Philosophical background on intelligent interfaces

All along the human-interface interaction has aroused the interest of re-
searchers, philosophers and cognitive scientists, which attempt to answer
to questions about artificial intelligence (AI), such as “Can a machine display
intelligence?”.

The basic position of most AI researchers is summed up in this statement,
which appeared in the proposal for the Dartmouth Conferences of 1956 [88]:

“Every aspect of learning or any other feature of intelligence can be
so precisely described that a machine can be made to simulate it.”

The first step to answering those questions is to clearly define “intelligence”.
Alan Turing, in a famous and seminal 1950 paper [144], reduced the problem
of defining intelligence to a simple question about conversation. He suggests
that:

“If a machine can answer any question put to it, using the same
words that an ordinary person would, then we may call that machine
intelligent.”

Recent AI research defines intelligence in terms of “intelligent agents”, that is
more close to our definition of “intelligent interfaces”. An “agent” is some-
thing which perceives and acts in an environment; a “performance measure”
defines what counts as success for the agent [117]:

“If an agent acts so as maximize the expected value of a performance
measure based on past experience and knowledge then it is intelligent.”
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In 1963, Allen Newell and Herbert Simon proposed that “symbol manipula-
tion” was the essence of both human and machine intelligence. They wrote
[95]:

“A physical symbol system has the necessary and sufficient means of
general intelligent action.”

This claim is very strong: it implies both that human thinking is a kind of
symbol manipulation (because a symbol system is necessary for intelligence)
and that machines can be intelligent (because a symbol system is sufficient for
intelligence). Another version of this position was described by philosopher
Hubert Dreyfus, who called it “the psychological assumption” [38]:

“The mind can be viewed as a device operating on bits of information
according to formal rules.”

A distinction is usually made between the kind of high level symbols that
directly correspond with objects in the world and the more complex “symbols”
that are present in a machine like a neural network. Moreover, Dreyfus argued
that human intelligence and expertise depended primarily on unconscious
instincts rather than conscious symbolic manipulation, and argued that these
unconscious skills would never be captured in formal rules [38, 117].

Russell and Norvig point out [117] that, in the years since Dreyfus pub-
lished his critique, progress has been made towards discovering the “rules”
that govern unconscious reasoning. The situated movement in robotics re-
search attempts to capture our unconscious skills at perception and attention
[21]. Computational intelligence paradigms, such as neural networks, evolu-
tionary algorithms and so on are mostly directed at simulated unconscious
reasoning and learning.

Probably IAIs will never able to solve any problem that a person would
solve by thinking, however, they may help users to enjoy an immersive com-
munication.
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2.3 INTELLIGENT ACOUSTIC INTERFACES FOR
IMMERSIVE COMMUNICATIONS

After years of extraordinary technological advances in telecommunications,
new requirements are demanded by users which are no longer satisfied with
talking to someone over a long distance and in real time, but they want
to collaborate through communication in a more productive way with the
feeling of being together and sharing the same environment. That gives rise
to immersive communication. Such immersive communication is yet to become
a reality supported by modern communication technologies. A person’s sense
of acoustic immersion is formed by his or her sensory response to the auditory
stimuli that exist in the ambiance of their environment [66].

Immersive communications take place in multisource environments, as
depicted in Fig. 2.3 where interfering signals may degrade quality and in-
telligibility of the desired speech source. Therefore, acquisition of desired
signals with high quality is far more difficult and challenging for immersive
communications than in the classical telephony environment where the mi-
crophone is close to the user. In immersive communications, it is more likely
that multiple parties will be involved and conferencing is a more common
mode of operation than point-to-point calling. In conferencing, one may hear
the unwanted interfering signals from every other participant and therefore
the level of the perceived noise can grow with the number of participants.
When the number is large and if interfering sources are not well controlled,
the perceived noise can reach a level such that speech is overwhelmed. So
interfering sources become a more quality-threatening problem for immersive
voice communication [65, 66].

Immersive communication offers great opportunities for acoustic and
speech signal processing and implies the use of IAIs. Voice is by far the domi-
nant media in the exchange of conference content. In fact, a teleconferencing
session can still go on when the video link is broken, but it has to stop if the
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Fig. 2.3: Immersive speech communication in multisource environment.

audio link is disrupted. So in addition to the pursuit of multimodal capa-
bilities, we should never forget the importance of speech quality (including
intelligibility and naturalness) and intermodal synergy. Moreover, there are
great potentials to improve these two factors in an immersive teleconference
with multiple parties being involved since binaural hearing is now allowed
and can be fully exploited. This is an imperative step towards immersive
communication. With both ears being kept busy, our auditory system can
more easily extract a single talker’s speech among multiple conversations
and background noise, and can more seamlessly work together with the vi-
sual system in an adverse acoustic environment for speech perception (e.g.,
lip-reading).

An IAI for immersive communication aims at extracting, from audio sig-
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nals, useful informations for computational or human purpose, such as analy-
sis or synthesis of audio signals. This feature is also known as machine listening.
At the same time, an IAI has to reproduce desired acoustic information taking
into account that the listener would hear the sound exactly as in the original
sound field. This feature indeed is known as spatial sound reproduction. To these
ends, an IAI needs to replicate four attributes of face-to-face communication
[65, 66]:

1. full-duplex exchange;

2. freedom of movement without body-worn or tethered microphones (i.e.,
hands-free in the broad sense);

3. high-quality speech signals captured from a distance;

4. spatial realism of sound rendering.

These requirements imply that multiple microphones and loudspeakers would
be used and the entire voice communication infrastructure might need to
be renovated. However, the scope of this thesis mainly concerns with the
machine listening feature, since we deal with adaptive algorithms which have
to process the acoustic signals acquired by a microphone interface.
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3.1. Main characteristics of acoustic channels

IMMERSIVE speech communications often take place in multisource re-
verberant environments where interfering signals may deteriorate the
speech intelligibility. In order to tackle such limitations, IAIs aims at

modelling the acoustic channel by means of adaptive filtering algorithms.
In this chapter we introduce a set of problems which limit the achievable
communication quality, and how to address these problems using adaptive
filtering algorithms. Moreover, we briefly describe some of the main acous-
tic applications in which it is possible to employ IAIs based on adaptive
algorithms.

3.1 MAIN CHARACTERISTICS OF ACOUSTIC
CHANNELS

The problems to address in the modelling of acoustic channels are substan-
tially different from those occurring in other communication channels, such as
wireless or fibre channels. This is due to the fact that acoustic channels possess
distinctive characteristics that set them apart from other kinds of transmission
channels and focus attention on the development of more effective algorithms
for IAIs. In the following we summarize some of the main characteristics
of acoustic channels that must be taken into account in designing adaptive
algorithms for IAIs.

3.1.1 Linearity and shift-invariance

An acoustic channel can be definitely labelled as a linear shift-invariant
(LSI) system [65]. Linearity and shift-invariance are the two most important
properties for simplifying the analysis and design of discrete-time system and
often such characteristics do not belong to other communication channels. A
linear system ought to satisfy the rules of homogeneity and additivity which are
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the basis of the principle of superposition. For a homogeneous system, scaling
the input by a constant results in the output being scaled by the same constant.
For an additive system, the response of the system to a sum of two signals is
the sum of the two responses. A system is shift-invariant when a time shift in
its input leads to the same shift in its output. Therefore, taking into account
these properties, an LSI system can be easily characterized by its impulse
response. Once the impulse response is known, it is possible to foresee the
response of the LSI system to any possible input stimuli.

3.1.2 Modelling by FIR filters

The AIR is usually very long. However, finite impulse response (FIR) filters
are more frequently used than infinite impulse response (IIR) filters in acoustic
applications. This choice is justified by the fact that the stability of FIR filters
is easily controllable; moreover, there are a large number of adaptive algo-
rithms providing good performance for FIR filters, thus allowing an accurate
modelling of the acoustic channel [65, 120].

3.1.3 Time-varying AIR

Like many other communication channels with different physical medium,
acoustic channels are inherently time-varying systems. In immersive speech
communications sound sources are free to move in the environment. Moreover,
even a change of atmospheric conditions in the environment may cause a
variation of the AIR. However, this time-varying property usually does not
prevent the use of FIR filters to model acoustic channels since acoustic systems
generally change slowly compared to the length of their AIR [65]. Therefore,
dividing time into periods, it is possible to assume that in each period the
acoustic channel is stationary and can be modelled by means of an FIR filter.
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3.1.4 Frequency selectivity

Acoustic waves are pressure disturbances propagating in the air. With
spherical radiation and spreading, the inverse-square law rules and the sound
level falls off as a function of distance from the sound source. As a rule of
thumb, the loss is 6 dB for every doubling of distance. But when acoustic
sound propagates over a long distance (usually greater than 30 m), an excess
attenuation of the high-frequency components can often be observed in addi-
tion to the normal inverse-square losses, which indicates that the acoustical
channel is frequency selective [65]. The level of this high-frequency excess at-
tenuation is highly dependent on the air humidity and other atmospheric
conditions.

The inverse-square law governs free-space propagation of sound. But in
such enclosures as offices, conference rooms, and cars, acoustic waveforms
might be reflected many times by the enclosure surfaces before they reach a mi-
crophone. The attenuation to the reflection is generally frequency-dependent.
However, for audio signals this dependency is usually not significant, un-
like radio-frequency signals in indoor wireless communication. For acoustic
channels in these environments, it is the aspect of multipath propagation
that leads to frequency-selective characteristics. Frequency-selective fading is
viewed in the frequency domain. In the time domain, it is called multipath delay
spread and induces sound reverberation analogous to inter-symbol interference
observed in data communications.

3.1.5 Reverberation time

Room reverberation is usually regarded as destructive since sound in
reverberant environments is subject to temporal and spectral smearing, which
results in distortion in both the envelope and fine structure of the acoustic
signal [65]. If the sound is speech, then speech intelligibility will be impaired.
However, room reverberation is not always detrimental. Although it may
not be realized consciously, reverberation is one of many cues used by a
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listener for sound source localization and orientation in a given space. In
addition, reverberation adds “warmth” to sound due to the colorization effect,
which is very important to musical quality. The balance between sound
clarity and spaciousness is the key to the design of attractive acoustic spaces
and audio instruments, while the balance is achieved controlling the level of
reverberation.

The level of reverberation is typically measured by the reverberation time,
T60, which was introduced by Sabine [118] and is now a part of the ISO (Interna-
tional Organization for Standardization) reverberation measurement procedure.
The reverberation time is defined as the length of time that it takes the rever-
beration to decay 60 dB from the level of the original sound. The most widely
used method for measuring the sound decay curves is to employ an excitation
signal and record the acoustic channel’s response with a microphone.

3.1.6 Channel invertibility and minimum-phase

The invertibility of an acoustic channel is of particular interest in many
acoustic applications such as speech enhancement and dereverberation. A
system is invertible if the input to the system can be uniquely determined by
processing the output with a stable filter [65]. In other words, there exists a
stable inverse filter that exactly compensates the effect of the invertible system.
A stable, causal, rational system requires that its poles be inside the unit circle.
Therefore, a stable, causal system has a stable and causal inverse only if both
its poles and zeros are inside the unit circle. Such a system is commonly
referred to as a minimum-phase system [65].

Unfortunately AIRs are almost never minimum-phase [94]. This implies
that perfect deconvolution of an acoustic channel can be accomplished only
with an “acausal” filter. This may not be a serious problem for off-line pro-
cessing since we can incorporate an overall time delay in the inverse filter and
make it causal. But the delay is usually quite long for acoustic channels and
the idea is difficult to implement with real-time systems.
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3.1.7 Multichannel diversity

In multiple-input multiple-output (MIMO) systems, one of the most impor-
tant feature is the channel diversity, which implies that different channels of
a MIMO system would have no modes in common [65]. If the channels are
modelled as FIR filters, channel diversity means that their transfer functions
share no common zeros, or in other words, they are co-prime polynomials.

However, in this dissertation we deal with adaptive algorithms for single-
input single-output (SISO) systems; therefore, for possible future extension of
such algorithms in the multichannel domain, the characteristic of multichannel
diversity will have to be take into account.

3.1.8 Sparse acoustic impulse response

Recently, it has been recognized that most AIRs are sparse in their nature,
i.e., only a small percentage of the impulse response components have a signif-
icant magnitude while the rest are zero or small [40]. This characteristic can be
exploited by a class of adaptive algorithms, named proportionate adaptive filters
[40, 13, 100], in order to improve their performance in terms of initial conver-
gence and tracking. Proportionate adaptive algorithms will be extensively
discuss in Part II of this dissertation.

3.2 LIMITATIONS AND PROBLEMS IN ACOUSTIC
PATH MODELLING

As previously said, adaptive filtering algorithms in IAIs aim at modelling
an acoustic channel through the estimate of the AIR generated by the acous-
tic coupling between a loudspeaker and a microphone. However, the AIR
estimate becomes more critical when the acoustic path is affected by adverse
conditions of the environment. The design of an adaptive algorithm has to
take into account such problems in order to provide anyway an accurate esti-
mate of the AIR that allows to preserve the quality of an immersive speech
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Fig. 3.1: An acoustic interface.

communication.

In this section we introduce a brief overview on such problems which limit
the performance of an AIR modelling; they may be essentially labelled as
linear or nonlinear events and are depicted in Fig. 3.1.

3.2.1 Linear limitations

Hardware limitations

Hardware limitations include thermal and impulsive circuit noise from am-
plifiers, and DSP related noise such as truncation, finite word lengths and
characteristics of the particular algorithm being used [18]. These limitations
are often caused by low-quality electronic components used in low-cost acous-
tic interfaces. This kind of problem essentially affects the step size value of
the adaptive algorithm which may need to be very small, thus leading to a
decrease of convergence performance at steady-state. Therefore, this limitation
requires a good trade-off between convergence rate and precision.
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Under-modelling of the AIR

As said in Par. 3.1.2, the modelling of the AIR is usually performed by
means of FIR filters. However, this entails some difficulties in designing the
filter, and the first and foremost one is the choice of the filter length. Indeed,
it is very difficult to a priori know the exact length of the AIR, and, anyway,
it usually requires a large number of filter coefficients, that is unpracticable
for a real-time implementation. This is the reason why the habit is to choose
a filter length smaller than the actual length of the AIR, thus leading to an
under-modelling of the AIR. The remaining unmodelled tail portion of the AIR
manifests itself as a finite error at the output of the processor. However, blindly
increasing the number of taps results in added complexity, greater algorithmic
noise and slower convergence. Therefore, this limitation requires a proper
setting of the step size value in order to avoid this further error contribution
at the output of the modelling system.

Nonstationary environment

The initial convergence of a particular algorithm identifies the room con-
figuration, however as objects move and the input characteristics become
nonstationary, the tracking ability of the algorithm becomes important. For
example, although Hessian-based algorithms, such as the recursive least squares
(RLS) algorithm, have fast convergence, it has been found that algorithms
based on instantaneous gradient estimates, like the normalized least mean square
(NLMS), actually outperform Hessian-based algorithms when nonstationari-
ties occur [120, 18].

Double talk

The double talk event occurs when an interfering speech signal is present
and is superimposed over the acoustic path to model. In order to solve this
problem a double talk detector (DTD) is usually adopted [57], which stops the
filter adaptation in presence of double talk in order to preserve the desired
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speech. A DTD is a good mean to meet the contradictory requirement of low
divergence rate and fast convergence in acoustic channel modelling. However,
not ever a DTD provides desired performance, since an optimal DTD is diffi-
cult to realize and may be even very expensive from a computational point of
view.

3.2.2 Nonlinear limitations

Loudspeaker distortions

Generated mainly in the loudspeaker, nonlinear distortions effectively put
a limit on the achievable quality of algorithms based on linear mechanics
[147, 18]. In addition to the direct loudspeaker effects, secondary nonlinear
effects such as rattling can be considered nonlinear in nature. Rattling is very
difficult, if not impossible to model. However, the loudspeaker nonlinearity
is weak and may therefore be modelled accurately with nonlinear models.
Loudspeaker distortions represent a very difficult problem to solve since
they may be highly time-varying, thus leading to a kind of nonlinearity with
memory.

Enclosure vibrations

A major part of the AIR is due to loudspeaker/microphone/enclosure
coupling which is stationary in nature and larger in amplitude than a speech
signal. The particular adaptive algorithm used will devote a portion of its
computation to adapt these AIR coefficients which may be better modelled
by another method. Whistling can occur in small orifices in sealed enclosures.
This whistling is essentially chaotic in nature and can be a problem if it occurs
close to the microphone [18]. Such vibrations, especially in the lower voice
frequencies, causes significant nonlinearities which may seriously impair the
intelligibility of a hands-free speech communication.
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3.3. Acoustic echo cancellation

3.3 ACOUSTIC ECHO CANCELLATION

A typical application of acoustic channel modelling is definitely the acoustic
echo cancellation (AEC). Acoustic echo in a hands-free voice communication
system is produced by the acoustic coupling between a loudspeaker and a
microphone, as depicted in Fig. 3.2. The perception of an echo depends on
not only its level but also its delay [66]. Through long-distance transmission,
the echo features a long delay time and would significantly reduce the quality
of voice communication. When the delay approaches a quarter of a second,
most people find it difficult to carry on a normal conversation. Full-duplex
voice telecommunication was implausible, if not impossible, before the echo
cancellation theory was developed by Bell Labs researchers in the 1960s [132].
For an immersive audio system with several microphones and loudspeakers,
multiple echo paths need to be identified. Regardless of how many micro-
phones there are, AEC is always carried out individually with respect to each
of them. But the number of loudspeakers present in the system draws a theo-
retical difference between monophonic (one loudspeaker) and multichannel
(multiple loudspeakers) echo cancellations in the difficulty of tracking the
echo paths [66].

In echo cancellation, the source (loudspeaker) signals are known. So echo
control is theoretically a well-posed problem [66], and its practical applications
have been relatively more successful than the control of the other types of
noise (such as additive noise, reverberation and unwanted speech) in which
blind or semiblind methods have to be incorporated.

Historically, the study of acoustic echo cancellation substantially enriched
the adaptive filtering and system identification literature. Indeed, an adaptive
filter plays a central role in a monophonic echo cancellation system. It attempts
to dynamically identify the acoustic echo path. As long as the channel impulse
response of the echo path can be quickly and accurately determined, it is then
straightforward to generate a good estimate of the echo and subtract it from the
microphone signal. Since the loudspeaker signal as the reference is available,
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Fig. 3.2: Microphone-loudspeaker acoustic coupling.

numerous nonblind adaptive filtering methods for system identification are
applicable for solving this problem [131, 12, 66].

In order to better comprehend AEC application, let us introduce a brief
description of the processing performed by an acoustic echo canceller in the
context of a teleconferencing communication between two (or more) users
located in different environments. As it is possible to notice from the scheme
in Fig. 3.3, at n-th time instant, the speech signal coming from the remote user,
also known as far-end, and denoted as x [n], arrives at the other side of commu-
nication and is reproduced by the loudspeaker. During the reproduction the
far-end signal may result distorted by loudspeaker nonlinearities. Moreover,
being the speech communication immersive, the far-end signal reproduced by
the loudspeaker is acquired by the microphone(s) of the acoustic interface
used by the local user, or also said near-end. The acoustic coupling between
the microphone and the loudspeaker is characterized by an acoustic path
which contains information about the environment reverberations. The signal

33



3.3. Acoustic echo cancellation

Adaptive
Filter

far-end

far-end

near-end

 x n

   s n v n

 d n e n

 y n

nw

Fig. 3.3: Processing scheme of an acoustic echo canceller.

emitted by the loudspeaker and acquired by the microphone represents the
echo signal, which may be possibly superimposed on the near-end contribution
that is the desired information for the far-end user. The near-end signal is
composed of the near-end speech signal s [n] with the addition of background
noise v [n]. In literature, the overall microphone signal is usually named as
desired signal and it is denoted with d [n]. At the same time, the far-end signal
x [n] is processed by the acoustic echo canceller in order to estimate the AIR
between microphone and loudspeaker. The output signal of this filtering
process, y [n], represents the estimated echo signal which is then subtracted by
the microphone signal d [n], preserving the near-end information, to the end
of generating the error signal e [n] that is sent to the far-end user.

AEC represents an exhaustive application in hands-free speech commu-
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nications since it includes a set of problems common to the whole sector of
acoustic scene analysis: the estimate of the impulse response, the presence of
nonstationary elements in the environment, the presence of unwanted interfer-
ing signals, the presence of nonlinearities [12]. Moreover, AEC allows to obtain
a complete evaluation of the adaptive filtering algorithms that may be used
afterwards also in other acoustic applications, such as adaptive beamforming,
noise reduction, speech dereverberation, speech enhancement, etc.

3.4 PERFORMANCE MEASURE

In order to evaluate performance of adaptive filtering algorithm in AEC
applications two measures are usually computed: the echo return loss en-
hancement and the normalized misalignment.

3.4.1 Echo return loss enhancement

The echo return loss enhancement (ERLE) is defined by G.168 as “the attenua-
tion of the echo signal as it passes through the send path of an echo canceller”.
The ERLE results from the ratio in dB between the instantaneous power of the
desired signal d [n], i.e. the microphone signal, and the instantaneous power
of the residual echo signal e [n] [57]:

ERLE [n] = 10 log
E
{
d2 [n]

}
E {e2 [n]}

(3.1)

A large value of the ERLE denotes a good performance of the acoustic echo
canceller, while a small value of the ERLE denotes a significant presence of
the echo signal in the processed signal.

In Fig. 3.4 the limitation effects on the maximum achievable ERLE is repre-
sented. It is possible to see that a first important limit is posed by the acoustic
environment due above all to reflections and nonstationary signals. However,
more important limits are generated by the presence of nonlinearities in the

35



3.4. Performance measures

Acoustic
environment limit

Memoryless
nonlinearities limit

Dynamic
nonlinearities limit

varies with volume

varies with volume

ER
LE

[d
B

]

samples

Fig. 3.4: Limitation effects on the achievable ERLE.

echo path, and in particular by nonlinearities with memory, i.e. those non-
linearities which are originated by dynamic systems. These limits posed by
nonlinearities also depends on volume and frequency variations and may be
particularly harmful to speech quality when intermodulation distortions occur
at low frequencies.

As it is possible to notice from equation (3.1), the ERLE is a measure that
depends on the minimization of the error signal. This allows to use the ERLE
in the evaluation of both linear and nonlinear echo cancellers. However, the
ERLE does not highlight sufficiently small variations of the adaptive algorithm;
moreover, a large value of the ERLE does not guarantee as much large degree
of speech quality. Due to these reasons, according to our opinion, the ERLE
is not always the best performance measure to adopt in order to evaluate an
adaptive filter in AEC applications; however, in literature the ERLE remains
the most used performance measure to evaluate echo cancellers.
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3.4.2 Normalized misalignment

Another important performance measure is the normalized misalignment
which quantifies how “well” an adaptive filter converges to the impulse
response of the system that needs to be identified [12]. It is defined in dB as:

M = 20 log10

(∥∥wopt − ŵn

∥∥
2

‖wopt‖2

)
(3.2)

where wopt is the optimal solution to estimate, i.e. the AIR, and ŵn is the filter
estimate by the adaptive filter.

Unlike the ERLE, the normalized misalignment depends on the coeffi-
cients of the adaptive filter instead of the error signal, thus leading to some
advantages and drawbacks. The most significant drawback is the fact that the
normalized misalignment cannot be used to evaluate adaptive filters in pres-
ence of nonlinearities. This is due to the fact that nonlinearities are not taken
into account in the optimal solution while they affect the filter estimate, thus
the normalized misalignment does not have sense in this case. However, the
normalized misalignment, unlike the ERLE, allows to have a complete eval-
uation of a linear adaptive algorithm in terms of convergence rate, tracking,
and accuracy of the solution at steady-state. Moreover, the behaviour of the
normalized misalignment also reflects the perceived quality of the processed
speech signal. In fact, when the normalized misalignment shows a jumpy
behaviour usually the processed signal may display some musical noise.

Such analysis focus the attention on the evaluation of the performance
of adaptive filters in the nonlinear case, in which it is not possible to exploit
a such important measure as the normalized misalignment. This might be
definitely matter of future research.
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PART II

LINEAR ADAPTIVE ALGORITHMS

—Playing chess is about the dumbest question you can ask.
But, if you want, maybe can make money that way, or something.

Noam Chomsky
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4.1 INTRODUCTION TO ADAPTIVE FILTERS

In studying digital signal processing (DSP) techniques, the term “adaptive”
is used when a (digital or analog) system is able to automatically “adjust” its
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4.1. Introduction to adaptive filters

parameters in response to input stimuli in order to achieve a processing goal
[146].

An adaptive filter is defined as a self-designing system that relies for its
operation on a recursive algorithm, which makes it possible for the filter to
perform satisfactorily in an environment where knowledge of the relevant
statistics is not available [59]. In that context, an adaptive filter can be viewed
as an “intelligent circuit” able to adapt according to a predetermined law
[146].

The ability of an adaptive filter to carry out a certain target is usually
expressed through a criterion that minimizes a given cost function, often de-
noted as J (·), which is a function of filter parameters. The procedure which
determines the variation law of the filter parameters, according to a given
cost function, is also known as adaptive algorithm, or in same cases learning
algorithm.

Usability of adaptive filtering techniques for the solution of real problems
is widely stretched as much as fields of their applications. Adaptive filters are
extensively used in many DSP areas, such as: modelling, estimate, localization,
source separation, etc. Due to the rise of neural networks, which may be
considered as a particular nonlinear class of adaptive filters, the field of interest
has been further extended, thus intersecting artificial intelligence methods in
order to provide consistent solutions even for the so-called ill-posed problems
[146]. Recently such methods have merged into an infant subject named
computational intelligence.

4.1.1 Classification of adaptive filters

There are a lot of way of classifying adaptive filters [146], however, the
most popular classification may be carried out based on the learning algorithm
and on the input-output relation.

A first subdivision concerns the adopted learning algorithm, i.e. the modal-
ity with which it is possible to adapt the filter parameters. In particular,
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Fig. 4.1: Scheme of a supervised adaptive filter.

adaptive filters can be classified into:

• supervised adaptive filters - require the availability of a training sequence
that provides different realizations of a desired response for a specified
input signal vector. The desired response is compared against the actual
response of the filter due to the input signal vector, and the resulting
error signal is used to adjust the free parameters of the filter. The process
of parameter adjustments is continued in a step-by-step fashion until a
steady-state condition is established. A representation of a supervised
adaptive filter is depicted in Fig. 4.1;

• unsupervised adaptive filters - perform adjustments of its free parameters
without the need for a desired response. For the filter to perform its
function, its design includes a set of rules that enable it to compute an
input-output mapping with specific desirable properties. In the signal-
processing literature, unsupervised adaptive filtering is often referred
to as blind deconvolution or blind adaptation [59]. However, in this
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dissertation we essentially deal with supervised adaptive filters.

Adaptive filters may also be classified according to an input-output relation.
Denoting with wn the time-varying vector of filter coefficients (i.e. filter pa-
rameters), it is possible to classify an adaptive filter according to the properties
of an operator T {·} which defines the relation between the input of the filter
x [n] and its output y [n]:

y [n] = T {x [n] ,wn} . (4.1)

On this basis, two main groups of adaptive filters can be characterized:

• linear adaptive filters - for the operator T {·} the superposition principle
holds. Linear adaptive filters compute an estimate of a desired response
by using a linear combination of the available set of observables applied
to the input of the filter [59, 146];

• nonlinear adaptive filters - for the operator T {·} the superposition principle
is not valid anymore [59]. In this case it is usually necessary to define
further sub-labels due to the nature of the nonlinearity, that can be
monodrome, invertible, uninvertible, static, dynamic, etc. [146].

Therefore, sub-labels for linear and nonlinear adaptive filters, always taking
into account the input-output relation, may be the following ones:

• static - the output at time instant n only depends on the input at time
instant n; in this case the operator T {·} has the same properties of a
function;

• dynamic with finite memory or FIR - the output at time instant n depends
on the input samples according to instants n, n− 1, . . . , n−M + 1 of a
time window, i.e.:

y [n] = T {x [n] , x [n− 1] , . . . , x [n−M + 1] ,wn} (4.2)
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where M is the length of the time window, i.e. the filter length;

• dynamic with infinite memory or IIR - the output at time instant n depends
on the input at time instants n, n− 1, . . . , n−M + 1, and on past output
samples, i.e.:

y [n] =T {x [n] , x [n− 1] , . . . , x [n−M + 1] ,

y [n− 1] , . . . , y [n−M + 1] ,wn} .
(4.3)

A possible classification of adaptive filters [146] based on the input-output
relation (restricted to the dynamic case), is depicted in Fig. 4.2.

4.2 LINEAR OPTIMUM FILTERING

Linear optimum discrete-time filters are also known as Wiener filters, which are
an extremely useful tool since its invention in the early 30’s by Norbert Wiener
[156]. Wiener was one of the first researchers to treat the filtering problem of
estimating a process corrupted by additive noise. The optimum estimate that
he derived required the solution of an integral equation known as the Wiener-
Hopf equation [158]. Soon after he published his work, Levinson formulated
the same problem in discrete time [77]. Levinson’s contribution has had a
great impact on the field of adaptive signal processing. Indeed, thanks to him,
Wiener’s ideas have become more accessible to many engineers [65]. Wiener
theory plays a fundamental role in acoustic applications in which the AIR
between a loudspeaker and a microphone needs to be identified. Thanks to
many adaptive algorithms directly derived from the Wiener-Hopf equations,
this task is now rather easy.

With the Wiener theory, it is possible to identify an unknown system, that
in the acoustic case is the AIR. Given the input signal x [n] and the desired
signal d [n] it is possible to define the error signal e [n]:
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Fig. 4.2: Classification of adaptive filters based on the input-output relation.

e [n] = d [n]− y [n]

= d [n]− xT
nwn−1

(4.4)

where y [n] is the filter output and vector wn ∈ RM =
[
w0 [n] w1 [n] . . .

wM−1 [n]
]T

is an estimate of the AIR to identify. We suppose that the AIR
and the vector wn have the same length M .

To find the optimal filter, we need to minimize a cost function which is
always built around the error signal (4.3) [59, 65]. The usual choice for this
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criterion is the mean square error (MSE) [59]:

J (wn) =E
{
e2 [n]

}

=E
{
d2 [n]

}
− E

{
wT

nxnd [n]
}
− E

{
xnw

T
nd [n]

}

− E
{
wT

nxnx
T
nwn

}
.

(4.5)

Let us remember that, for definition: σ2
d = E

{
d2 [n]

}
is the variance of the

signal d [n]; gn = E {xnd [n]} ∈ RM is the cross-correlation between the input
xn and the desired signal d [n]; and, finally, Rn = E

{
xnx

T
n

}
∈ RM×M is the

autocorrelation matrix. Equation (4.4) can be brought back in the following
quadratic form [59, 146]:

J (wn) = σ2
d −wT

ngn − gT
nwn +wT

nRnwn (4.6)

The optimal Wiener filter, that we denote as wopt, is the one that cancels the
gradient of J (wn) with respect to wn, i.e.:

∇J (wn) =
∂J (wn)

∂wn
= 0 (4.7)

where the operator ∇ denotes the gradient. We have:

∇J (wn) = 2E

{
e [n]

∂e [n]

∂wn

}

= −2E {e [n]xn} .
(4.8)

Therefore, taking into account (4.5) and (4.7), at the optimum we have:

∇J (wn) =
∂
(
σ2
d −wT

ngn − gT
nw +wT

nRnwn

)
∂wn

= 2 (Rnwn − gn) .

(4.9)
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Therefore, the solving system results:

Rnwn = gn (4.10)

which corresponds to a linear system of equations, also known as Wiener-
Hopf normal equations [156]. The solution to (4.9), also known as Widrow-Hopf
equation [155, 153], can be written as:

wopt = R−1
n gn (4.11)

Linear optimum filtering provides minimum MSE and therefore helps to
estimate accurately the unknown AIR.

4.3 GRADIENT ADAPTATION

The optimal solution to (4.9) can be obtained employing a gradient descent
optimization procedure.

4.3.1 The steepest descent method

The method of steepest descent gradient, as the name implies, relies on
the slope at any point on the error performance surface to provide the best
direction in which to move. The steepest descent direction gives the greatest
change in elevation of the surface of the cost function for a given step laterally.
The steepest descent procedure uses the knowledge of this direction to move
to a lower point on the surface and find the bottom of the surface in an iterative
manner.

The steepest descent method is based on an iterative approach for finding
the parameter value associated with the minimum of the cost function: simply
move the current parameter value in the direction opposite to that of the
slope of the cost function at the current parameter value. Furthermore, if we
make the magnitude of the change in the parameter value proportional to the
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magnitude of the slope of the cost function, the algorithm will make large
adjustments of the parameter value when its value is far from the optimum
value and will make smaller adjustments to the parameter value when the
value is close to the optimum value [85]. This approach is the essence of the
steepest descent algorithm.

The steepest descent algorithm can be defined considering a recursive solu-
tion to Wiener normal equations (4.10). The algorithm can be represented by
its general form:

wn = wn−1 +
1

2
µ (−∇J (wn−1)) (4.12)

where the value 1/2 is just a proportionality constant and the parameter µ

is termed the step size of the algorithm. Note that for the steepest descent
algorithms n is an iteration index and does not coincide with the time instant.
Denoting J (wn) = E

{
e2 [n]

}
, the explicit expression of the gradient ∇J (wn)

can be easily derived from (4.6), thus resulting in (4.9). Therefore, replacing
(4.9), evaluated at iteration index n − 1, in (4.12), the explicit form of the
steepest descent algorithm results:

wn = wn−1 − µ (Rn−1wn−1 − gn−1)

= (I− µRn−1)wn−1 + µgn−1

(4.13)

where I ∈ RM×M is an identity matrix (therefore it does not require any itera-
tion index). Equation (4.13) is a recursive, multidimensional, finite different
equation in the index n, with initial condition (i.c.) w−1 [146, 59].

4.3.2 Convergence of the steepest descent algorithm

Given that the stationary point of the steepest descent algorithm is the
optimum minimum mean square error (MMSE) solution, a second, equally-
important consideration is whether the algorithm converges at all. In order
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to analyze the convergence properties of the steepest descent algorithm, let
us consider the misalignment vector of the filter, denoted as un = wn −wopt.
Remembering (4.10), after few passages [59, 146], it results from from (4.13)
that:

un = (I− µRn−1)un−1 (4.14)

Applying the unitary similarity transformation [53] on the correlation matrix Rn,
it is possible to obtain:

Rn = QnΛQT
n =

M−1∑
i=0

λiqn,iq
T
n,i (4.15)

where Λ = diag (λ0, λ1, . . . , λM−1), also known as spectral matrix, is the diag-
onal matrix containing the eigenvalues λi, with i = 0, . . . ,M − 1, of the corre-
lation matrix Rn. Matrix Qn, defined as Qn =

[
qn,0 qn,1 . . . qn,M−1

]
,

is known as modal matrix and it is composed of a set of orthogonal vectors
qn,i having unitary length, defined as eigenvectors of matrix Rn. Matrix Qn is
orthonormal (such that QT

nQn = I, i.e. Q−1
n = QT

n ).

Taking into account the decomposition (4.15), it is possible to rewrite (4.14)
as:

un =
(
I− µQn−1ΛQT

n−1

)
un−1, (4.16)

and setting ûn = QT
nun, where ûn represents the rotated vector un, it follows

that:

ûn = (I− µΛ) ûn−1 (4.17)

Therefore, equation (4.17) consists of a set of M decoupled difference equations
of the first order, such as:

ûi [n] = (1− µλi) ûi [n− 1] (4.18)
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where n > 0 and i = 0, . . . ,M −1. This last equation describe all the M natural
modes of the steepest descent algorithm. The solution to (4.18) can be deter-
mined starting from the i.c. ûi [−1], such that, with a backward substitution, it
is possible to write:

ûi [n] = (1− µλi)
n ûi [n] . (4.19)

Necessary condition so that the algorithm does not diverge, and therefore
for the stability of the algorithm, is that the argument of the exponent is
|1− µλi| < 1, or, equivalently:

0 < µ <
2

λi
. (4.20)

This proves that, with an appropriate choice of the step size µ satisfying (4.20),
ûi [n] tends to zero for n → ∞. This implies that:

lim
n→∞

wn = wopt, ∀w−1 (i.c.) . (4.21)

It follows that the vector wn converges exponentially and exactly to the opti-
mum.

4.4 STOCHASTIC GRADIENT ADAPTIVE
ALGORITHMS

The method of steepest descent can be used to find the optimum MMSE
estimate of wopt in an iterative fashion. However, this procedure uses the
statistics of the input and desired response signals and not on the actual
measured signals. In practice, the input signal statistics are not known a
priori. Moreover, if these statistics were known and if the autocorrelation
matrix Rn was invertible, we could find the optimum solution given in (4.11)
directly in one step! However, implementing this procedure exactly requires
knowledge of the input signal statistics, which are almost always unknown
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for real-world problems. Therefore, an approximate version of the gradient
descent procedure can be applied to adjust the adaptive filter coefficients using
only the measured signals [59, 120, 85, 146].

More precisely, from equations (4.12) and (4.8), it is possible to see that
the steepest descent method depends on the input data and desired response
signal statistics through the expectation operation that is performed on the
product e [n]xn. This product is the gradient of the squared error function(
e2 [n]

)
/2 with respect to the coefficient vector wn. We can consider the vector

e [n]xn as an approximation of the true gradient of the MSE estimation surface.
This approximation is known as the instantaneous gradient of the MSE surface.
In order to develop a useful and realizable adaptive algorithm it is possible to
replace the gradient vector E {e [n]xn} in the steepest descent update in (4.8)
by its instantaneous approximation e [n]xn. Adaptive filters that are based
on the instantaneous gradient approximation are known as stochastic gradient
adaptive filters [59, 120, 85, 146].

4.4.1 The Least Mean Square Algorithm

The least mean square (LMS) algorithm is the most popular memoryless
stochastic gradient algorithm. Introduced by Widrow-Hoff in 1960 [153], it
consists of simply considering the instantaneous squared error e2 [n] instead
of its expectation. The LMS algorithm can be viewed as a stochastic approxi-
mation of the steepest descent algorithm. Another important aspect concerns
with the iteration index nof the algorithm that, in this case, coincides with the
time index [146].

Denoting with ∇Ĵ (wn−1) ≈ ∇J (wn−1) the gradient vector estimate, the
general expression of the adaptation, similarly to (4.12), turns to be:

wn = wn−1 +
1

2
µ
(
−∇Ĵ (wn−1)

)
(4.22)

with an a priori error [59, 120], or simply named error, defined as:
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e [n] = d [n]− y [n]

= d [n]− xT
nwn−1

(4.23)

The explicit expression of the gradient vector ∇Ĵ (wn−1):

∇Ĵ (wn−1) =
∂e2 [n]

∂wn−1
= 2e [n]

∂e [n]

∂wn−1

= 2e [n]
∂
(
d [n]− xT

nwn−1

)
∂wn−1

= −2e [n]xn

(4.24)

such that the adaptation equation (4.22) simply becomes:

wn = wn−1 + µe [n]xn. (4.25)

The algorithm is adjusted by the step size µ, which in this basis formulation is
kept constant. Similarly to what done in the previous section for the steepest
descent algorithm, it is possible to prove that the algorithm converges when:

0 < µ < 2/µmax (4.26)

where λmax represents the larger eigenvalue of the autocorrelation matrix of
the input signal.

4.4.2 The Normalized Least Mean Square Algorithm

The normalized least mean square (NLMS) algorithm is structurally the same
as the LMS, but it differs in the way that the filter coefficients are updated.
In the LMS algorithm the weight adjustment is directly proportional to the
amplitude of input vector samples according to (4.25). Therefore, when the
vector xn is large, the LMS suffers from a gradient noise amplification problem.

To overcome this problem, the adjustment applied to the weight vector at
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each iteration is normalized with respect to the squared Euclidean norm of xn

[59, 120], thus the updating rule results:

wn = wn−1 + µ
e [n]xn

δNLMS + xT
nxn

(4.27)

with 0 < µ ≤ 2: δNLMS > 0 is the regularization parameter which prevents
division by zero during initialization when xn = 0.

4.4.3 The Recursive Least Squares Algorithm

Least squares algorithms aim at the minimization of the sum of the squares
of the difference between the desired signal and the model filter output [59,
120]. When new samples of the incoming signals are received at every iteration,
the solution for the least squares problem can be computed in recursive form
resulting in the recursive least squares (RLS) algorithms.

The RLS algorithm is known to pursue fast convergence even when the
eigenvalue spread of the input signal correlation matrix is large. This algo-
rithm has excellent performance when working in time-varying environments.
All these advantages come with the cost of an increased computational com-
plexity and some stability problems, which are not as critical in LMS-based
algorithms [59, 120, 36]. The RLS can be classified as a Hessian-based algo-
rithm, thus resulting an algorithm with memory [146, 42].

The cost function for this class of algorithms has the following expression:

Ĵ (wn−1) =
n∑

i=0

βn−i |e [n]|2

=
n∑

i=0

βn−i
∣∣d [i]− xT

nwn−1

∣∣2
(4.28)

where the constant 0 < β ≤ 1, defined as forgetting factor, takes into account the
memory of the algorithm. Therefore, the cost function depends on the actual
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instantaneous error and on error samples evaluated in the past iterations with
a weight continuously smaller. Note that when β = 1 the RLS consider the
same weight for all the past samples; in that case the algorithm has a growing
memory.

Let us take into account the following sequential regression notation with an
input data matrix Xn ∈ RN×M , where N is the length of the analysis window,
defined as:

Xn =




xT
n

xT
n−1

· · ·
xT
n−N+1




T

(4.29)

=




x [n] x [n− 1] · · · x [n−M + 1]

x [n− 1] x [n− 2] · · · x [n−M ]
...

...
. . .

...
x [n−N + 1] x [n−N ] · · · x [n−N −M + 2]




As a consequence the error vector and the desired signal vector are respectively
defined as:

en ∈ RN =
[
e [n] e [n− 1] e [n−N + 1]

]

dn ∈ RN =
[
d [n] d [n− 1] d [n−N + 1]

] (4.30)

Therefore, equation (4.28) can be expressed in the regression notation [146] as:

Ĵ (wn−1) = eTnBnen = Bn ‖dn −Xnwn−1‖22 . (4.31)

where Bn represents a weighted matrix:
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Bn =




1 0 · · · 0

0
. . . · · · 0

...
... βn−1

...
0 0 · · · βn



. (4.32)

Solving for the cost function (4.31), after few passages [59, 120, 146], it is
possible to achieve the following regression equation:

XT
nBnXnwn−1 = XT

nBndn (4.33)

Denoting the correlation estimates as:

Rxx,n = XT
nBnXnwn−1 and Rxd,n = XT

nBndn (4.34)

that can be also expressed as:

Rxx,n =

n∑
i=0

βn−1xix
T
i = βRxx,n−1 + xix

T
i (4.35)

Rxd,n =
n∑

i=0

βn−1xid [i] = βRxd,n−1 + xid [i] (4.36)

such that the correlations can be computed in a recursive way updating the
estimate carried out at the past iteration with new available information. The
solution of the sequential regression (4.33) at n-th time instant can be written
as:

Rxx,nwn−1 = Rxd,n (4.37)

Applying the matrix inversion lemma [53, 59, 146] to the matrix (4.35) and setting
Pn = R−1

xx,n, it is possible to achieve:

Pn = β−1Pn−1 −
β−1Pn−1xnβ

−1xT
nPn−1

1 + β−1xT
nPn−1xn

(4.38)
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where for computational convenience it is usual to define the vector:

kn =
β−1Pn−1xn

1 + β−1xT
nPn−1xn

(4.39)

also known as Kalman gain, so that the recursion (4.38) can be written as:

Pn = β−1Pn−1 − β−1knx
T
nPn−1 (4.40)

also known as Riccati equation.

The main drawback of the RLS algorithm is its computational cost, thus
LMS based algorithms, while they do not perform as well as RLS, are more
favourable in practical situations.

4.4.4 The Affine Projection Algorithm

The affine projection algorithm (APA) can be interpreted as a generalization
of the NLMS algorithm. The main advantage of the APA over the NLMS
algorithm consists of a superior convergence rate, especially for correlated
inputs, like speech. For this reason, the APA and different versions of it were
found to be very attractive choices for acoustic applications, such as AEC.

The APA, originally proposed in [98], was derived as a generalization of
the NLMS algorithm, in the sense that a filter vector of the NLMS may be
viewed as a one dimensional affine projection, while in the APA the projections
are made in multiple dimensions. When the projection dimension increases,
the convergence rate of the filter vector also increases. However, this also
leads to an increased computational complexity. The APA, like the RLS is a
Hessian-based algorithm, however it is not an “exact” second order adaptive
algorithm since its adaptation uses an estimate of the correlation matrix Rxx,n

“projected” over a subspace with appropriate dimension [146].

In order to derive the classical APA equations, let us consider an FIR
adaptive filter of length M , defined by the coefficients vector wn, and an input
data matrix defined similarly to (4.29) but using a window length N equal
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to K > 0, which is also defined as projection order. Therefore, the input data
matrix is defined as Xn ∈ RK×M , while the error signal and the desired signal
are respectively en, dn ∈ RK , similarly to (4.30). This corresponds to take into
account the last K samples of the input sequence. When K = 1 the adaptation
becomes one dimensional and thus the APA turns to be an NLMS algorithm.
Therefore, the equations that define the classical APA are [98]:

en = dn −Xnwn−1 (4.41)

wn = wn−1 + µXT
n

(
δAPAI+XnX

T
n

)−1
en (4.42)

where δAPA is the regularization factor of the APA and I ∈ RK×K is an identity
matrix.

We will see in the next chapter a general framework for the derivation of
adaptive algorithms, both for these classical stochastic gradient algorithms
and for the proportionate algorithm that will be introduced in the next chapter.
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IN the recent past, a family of proportionate adaptive filters has been pro-
posed for use in network telephony and acoustic applications. Propor-
tionate algorithms offer better convergence and tracking performances

than standard stochastic algorithms when the echo path is sparse. In this
chapter, we describe proportionate algorithms introducing an alternative
perspective on proportionate adaptive filters.
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5.1 INTRODUCTION

Nowadays, acoustic echo cancellation (AEC) is a key application in modern
speech communication systems. Echo phenomena are generated in speech
devices by a microphone-loudspeaker coupling, such as a far-end signal is
sent out by a loudspeaker and crosses an echo path before being acquired by
the microphone. Therefore, the acquired signal contains an echo contribution
which may be cancelled by means of an acoustic echo canceller. The main
component of an echo canceller is the adaptive filter which aims at estimating
the acoustic impulse response (AIR). Such applications require adaptive filters
with hundreds or even thousands of taps and their success depends on the
nature of the AIR [57]. Often enough the impulse response is time-varying and
it is affected by echo path changes, different degrees of sparseness, double-talk
events and under-modelling noise [57, 12].

Classic algorithms based on stochastic gradient, such as least mean square
(LMS) and normalized LMS (NLMS), distribute the adaptation energy among
all filter coefficients causing a very slow convergence for long filters [120, 59].
As a result, the application of these filtering algorithms to acoustic applications
becomes unpractical. In order to address this problem, in the last years it has
been conceived to act on the nature of AIRs. In fact, for both network and
acoustic scenarios, echo path have a specific property, which can be used in
order to help the adaptation process. Indeed, these systems are sparse in
nature, i.e., only a small percentage of the impulse response components have
a significant magnitude while the rest are zero or small [40].

The “sparseness” character of the echo paths inspired the idea to “pro-
portionate” the algorithm behaviour, i.e., to update each coefficient of the
filter independently of the others, by adjusting the adaptation step size in
proportion to the magnitude of the estimated filter coefficient. In this manner,
the adaptation gain is “proportionately” redistributed among all the coeffi-
cients, emphasizing the large ones in order to speed up their convergence, and
consequently to increase the overall convergence rate. This means that the
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Fig. 5.1: A sparse acoustic impulse response.

region with higher energy of the sparse impulse response is adapted faster
than the tail of the AIR. An example of sparse AIR can be found in Fig. 5.1, in
which the difference between the early reflections and the tail of the AIR is
quite clear.

The first proportionate algorithm was proposed by Duttweiler [40]; he
defined the Proportionate NLMS Algorithm (PNLMS) algorithm, whose idea
was to make the step size of each tap proportional to current absolute value
of the estimated weight. PNLMS converges and tracks much faster than
the NLMS algorithm when the impulse response that we need to identify
is sparse. However, its behaviour degrades significantly when the impulse
response is dispersive. PNLMS++ algorithm [50] partially solves the above
mentioned problem by alternating the update process between NLMS and
PNLMS. PNLMS++ seems a little bit less sensitive to the assumption of a
sparse impulse response than PNLMS, so it is far from the optimal solution.
In [13], the improved PNLMS (IPNLMS) was proposed where each step size
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shows a better balance between the fixed step size of NLMS and the large
amount of proportionality in PNLMS. As a result, IPNLMS always converges
and tracks better than NLMS and PNLMS, no matter how sparse the impulse
response is.

Another filter that unevenly weights the adaptation of the different taps
of the filter is the EG± algorithm [71], based on the exponentiated gradient
adaptation. Nevertheless, it has been proved [14, 93] that IPNLMS is a very
good approximation of the EG± algorithm, while being more convenient from
a practical point of view. Unfortunately, as any other gradient-based adaptive
filter, IPNLMS is subject to some compromises due to the selection of its
parameters. As a matter of fact, a large step size results in faster convergence,
while the residual misalignment is reduced for small step sizes. Moreover, the
choice of the proportionality factor imposes a behaviour trade-off for channels
with different degrees of sparseness [13].

In order to achieve faster convergence for a wide range of echo paths, it
is possible to combine the ideas of proportionate algorithms with the general
affine projection algorithm (APA). In [48], it is shown that a robust proportionate
affine projection algorithm (PAPA) converge faster than NLMS and performs
significantly better even during a double-talk situation. Moreover, in [119],
it is proved that an improved PAPA (IPAPA) easily outperforms all the above
mentioned proportionate algorithms and its performance does not depend on
the type of the impulse response. Furthermore, the choice of a proper value
for the proportionate factor has no any significant impaction on the IPAPA
tracking properties comparing to the IPNLMS. Moreover, in the last years
proportionate APAs have been improved [64, 152, 149, 78] until coming to an
efficient proportionate APA [102], which takes into account the “history” of the
proportionate factors.

Proportionate algorithms improve adaptive filtering performance when
the AIR is sparse; however, even in proportionate algorithms some problems
may occur in the choice of the parameters. A key parameter in adaptive echo
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cancellation is the step size which governs the stability and the adaptation
speed of the filtering algorithm. The choice of the step size sets the trade-off
between convergence, tracking ability and steady state misalignment. In order
to achieve the best trade-off, several variable step size (VSS) algorithms have
been proposed [58, 80, 124, 99]. In general, classic algorithms assume an exact
modelling situation, i.e. the length of the adaptive filter is equal to the length
of the system that has to be modeled. Since echo paths are extremely long,
under-modelling situations, in which the length of the adaptive filter is shorter
than the length of the echo path, often occur in echo cancelling applications.
The residual echo due to the unmodelled part of the impulse response can be
viewed as additional noise, also named under-modelling noise, that affects
the performance of the algorithm. In [101], the under-modelling case has been
considered.

In this chapter, we derive a novel perspective on proportionate algorithms
and then we define a new block-based proportionate APA and a variation of
it based on the recursive update of the covariance matrix. Furthermore, we
investigate the introduction of a variable step size. The chapter is organized
as follows: in Section 5.2 a new framework for the derivation of proportionate
algorithms is derived. Section 5.3 introduces the derivation of algorithms
using the new framework while the analytical description of the proposed
proportionate block APA is introduced in Section 5.4. In Section 5.5, variable step
size based proportionate algorithms are investigated.

5.2 AN ALTERNATIVE PERSPECTIVE ON
PROPORTIONATE ADAPTIVE FILTERS

In order to give an overall description of the proportionate algorithms, we
derive a general framework based on a novel perspective on the proportionate
algorithms using a natural gradient adaptive rule [2] and employing the least
perturbation property [120] by means of which we suggest the family of
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proportionate APA filters.

5.2.1 General properties of adaptive algorithms

Adaptive algorithms are usually introduced as an approximate iterative
solution of a global optimization problem as they are derived, in the steepest
descent implementation, by replacing the actual gradient vector with an in-
stantaneous approximation of it (see Section 4.3). It turns out that, starting
from an energy point of view and some general properties of the adaptive
algorithms, it is possible to define a class of algorithms that can be seen as an
exact, i.e. non-approximate, solution of a local optimization problem [120].

For this purpose, let us consider the regression vector dn ∈ RK containing
the K more recent samples of the observed desired signal:

dn =
[
d [n] d [n− 1] . . . d [n−K + 1]

]T
(5.1)

where K is known as projection order (see Section 4.4). Similarly, the data
matrix of the input signal Xn ∈ RK×M can be expressed as:

Xn =




xT
n

xT
n−1

· · ·
xT
n−K+1




T

(5.2)

=




x [n] x [n− 1] · · · x [n−M + 1]

x [n− 1] x [n− 2] · · · x [n−M ]
...

...
. . .

...
x [n−K + 1] x [n−K] · · · x [n−K −M + 2]




Moreover, let us assume to dispose, at n-th time instant, of some weight
estimate of the previous iteration, wn−1, so that it is possible to define the a
priori error signal:
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en = dn −Xnwn−1, (5.3)

and the a posteriori error signal:

εn = dn −Xnwn. (5.4)

Introducing the step size parameter µ [n] in its general time-varying form
and denoting with αn ∈ RK = diag (µ0 [n] , . . . , µK−1 [n]) the corresponding
diagonal matrix, it is possible to write the relation between the a posteriori and
the a priori error signals:

εn = (I−αn) en (5.5)

It can be notice that in case of constant step size value the diagonal matrix can
be written omitting the time index as α = µI, where µ is the fixed step size
value.

The relation (5.5), in which 0 < αn < I, expresses an energy constraint
between a priori and a posteriori errors, thus entailing the passivity of the
corresponding adaptive circuit scheme.

Taking into account equation (5.5) and denoting with:

w̃n = wn −wn−1 (5.6)

the vector that adjust the coefficients of the estimated filter, we can define a
cost function as:

J (wn) = ‖w̃n‖22 (5.7)

Due to the fact that the filter weights at steady state no longer change
during adaptation, it follows that any adaptive algorithm that minimized
J (wn) can be expressed as an exact method of local minimization, which is a
constrained optimization problem:
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wopt = argmin
wn

‖w̃n‖22

subject to εn = (I−αn) en

(5.8)

Such optimization problem describes the steepest descent adaptation process.
This process continues iteratively until the value of J (wn) reaches a suitably-
small value; at that point wn is close to wopt. With a proper selection of µ [n],
the steepest descent method adjusts wn in a way that lim

n→∞
wn = wopt. Such

an algorithm allows wn to converge to wopt.
Equation (5.8) represents the so-called least perturbation property and it is

equivalent to seek a solution wn that is closest to wn−1 in the Euclidean norm
sense, under an equality constraint between en and εn. The constraint is most
relevant when µ [n] is a small value, such that (I−αn) < I, because, when the
step size µ [n] is small enough, the magnitude of the a posteriori error εn will
always be less than that of the a priori error en, i.e.:

|εn| < |en| (5.9)

An important consequence of the least perturbation property is that a priori
and a posteriori errors tend to zero at steady state. In other words, as explained
in [71], an adaptive algorithm should be characterized by a reasonable balance
between the conservative (keep information gained in previous iterations) and
corrective requirements (ensure that any new information gained increases
the result accuracy).

Therefore, in conclusion, any adaptive algorithm can be derived and char-
acterized taking into account the following general properties:

(a) the magnitude of the a posteriori error is always less than the a priori error,
i.e. |εn| < |en|;

(b) at steady state, for n → ∞, the weights no longer change during adapta-
tion (least perturbation property);

66

Chapter 5. PROPORTIONATE ADAPTIVE ALGORITHMS

(c) at steady state, for n → ∞, a priori and a posteriori errors tend to zero.

5.2.2 Natural gradient adaptation

In order to take advantage from these properties, instead of the steepest de-
scent method we may adopt a different procedure to construct the coefficient
updates that takes into account the “non-isotropic nature” of the parame-
ter space. Natural gradient adaptation [2], [37] is a modified gradient search
that changes the standard gradient update procedure according to the non-
Euclidean nature of the parameter space [51]. The resulting updates are based
on a “non-straight-line” distance metric that is defined by the Riemannian
geometry of the parameter space [3], [3]. According to the natural gradient
procedure, the cost function in (5.7) can be rewritten as:

J (wn) = ‖w̃n‖2Gn

= w̃T
nGnw̃n

(5.10)

where Gn ∈ RM×M is a Riemannian metric tensor, which is a positive-definite
matrix, whose entries at n-th time instant depend on the coefficients of the filter
at time instant n− 1. The Riemannian metric tensor characterizes the intrinsic
curvature of a particular manifold in M -dimensional space. In the case of the
Euclidean space the Riemannian tensor is the identity matrix Gn = I, such
that (5.10) reduces to (5.7).

Before recasting the least perturbation property with the use of the Rie-
mannian metric tensor, let us consider the following aspect. The formalization
in (5.8) of the least perturbation property has merely theoretical significance
as it is based on the knowledge of a priori and a posteriori errors. For a more
constructive use of the general properties (a)-(c), it is necessary to define the
energy constraint as function of the only a priori error. Left multiplying both
sides of (5.6) with GnXn and then adding and subtracting the desired signal
vector dn defined in (5.1), it is possible to express the energy constraint in (5.5)
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just as a function of the a priori error. That is:

GnXnw̃n = GnXnwn −GnXnwn−1

= Gn [− (dn −Xnwn) + (dn −Xnwn−1)]

= Gn (−εn + en)

= Gnαnen.

(5.11)

Hence, we can formally rewrite the least perturbation property (5.8) as:

wopt = argmin
wn

‖w̃n‖2Gn

subject to GnXnw̃n = Gnαnen.
(5.12)

The update equation can be straightly derived solving the system relative to
the constraint (5.11). Thus, it results:

w̃n = (GnXn)
#αnen (5.13)

where (GnXn)
# is a pseudo-inverse matrix. Expliciting w̃n we can write:

wn −wn−1 = (GnXn)
T (

XnGnX
T
n

)−1
αnen. (5.14)

Inserting the regularization parameter δ, we achieve the general update equa-
tion of the family of normalized natural gradient (NNG) algorithms:

wn = wn−1 + (GnXn)
T (

δI+XnGnX
T
n

)−1
αnen. (5.15)

In case of Euclidean space, when Gn = I, for a unitary projection order, i.e.
K = 1, and a fixed step size, i.e. each diagonal element of α is equal to a fixed
scalar value µ, the update equation (5.15) describes the normalized least mean
square (NLMS) algorithm:

68

Chapter 5. PROPORTIONATE ADAPTIVE ALGORITHMS

wn = wn−1 + µ
xne [n]

xT
nxn + δNLMS

(5.16)

On the other hand, when the projection order is K > 1, equation (5.15) yields
the affine projection algorithm (APA) in its standard form [98] in case of Eu-
clidean space, or the natural APA (NAPA) [65], in case of Riemannian space.

5.3 DERIVATION OF PROPORTIONATE
ALGORITHMS

Starting from equation (5.15), it is possible to derive a complete formulation
of the class of proportionate algorithms. Different proportionate algorithms
can be obtained simply changing the projection order K and the Riemannian
tensor Gn. In particular, in proportionate algorithms, the Riemannian tensor is
consider as a full-blown sparseness constraint which weight the input signal;
this is why Gn is called proportionate matrix.

The simplest proportionate algorithm is the proportionate normalized least
mean squares in its improved version (IPNLMS) [13], whose derivation can
be achieved choosing a unitary projection order K = 1 and a diagonal pro-
portionate matrix Gn ∈ RM×M built up in order to adjust the step sizes of
the individual taps of the filter in a way that each step size turns out to be
proportional to the corresponding filter coefficient:

Gn = diag {g0 [n] , . . . , gM−1 [n]} (5.17)

The diagonal elements at n-th time instant are computed from the estimate
of the filter coefficients at time instant n − 1 in such a way that a larger
coefficient receives a larger increment, thus increasing the convergence rate
of the coefficient. The result is that active coefficients are adjusted faster than
non-active coefficients. Hence, proportionate algorithms converge much faster
than classic algorithms for sparse impulse responses.
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The choice of diagonal elements differentiates proportionate NLMS algo-
rithms proposed in literature [40, 50, 13]. However, the most efficient choice,
which exploits the “proportionate” idea better than other PNLMS algorithms,
is the one proposed in the IPNLMS [13]. According to that, diagonal elements
are:

gl [n] =
1− αp

2M
+ (1 + αp)

|wl [n− 1]|
2 ‖wn−1‖1 + ξ

(5.18)

where:

‖wn−1‖1 =
M−1∑
l=0

|wl [n− 1]| (5.19)

In (5.18), the coefficient index l = 0, . . . ,M − 1 and ξ is a small positive
number which avoids divisions by zero; the proportionality factor αp balances
the proportionality and its recommended value is 0 or −0.5 [13]. For αp = −1,
the IPNLMS is equal to NLMS. For αp close to 1, the IPNLMS behaves like the
PNLMS. The regularization parameter δp in IPNLMS is chosen as:

δp =
1− αp

2M
δNLMS. (5.20)

Similarly to the development of PNLMS and IPNLMS, if we consider a pro-
jection order K > 1, we can derive the proportionate affine projection algorithm
(PAPA) [48] and the improved PAPA (IPAPA) [64, 119]. However, we describe
an efficient version of proportionate APA which considers the “history” of the
proportionate factors [102]. Besides the projection order, the relevant differ-
ence of the proportionate APA compared to IPNLMS is the construction of Gn.
In fact, the proportionate matrix for K > 1 can be built up as a rectangular
matrix, that we denote as G′

n ∈ RK×M to distinguish from (5.17), in which
the first row contains the proportionate weight computed at n-th time instant,
gn ∈ RM =

[
g0 [n] . . . gM−1 [n]

]
, while the other K − 1 rows contain the

previous K − 1 realizations of gn:
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G′
n =




gT
n

gT
n−1

· · ·
gT
n−K+1



. (5.21)

The matrix product in (5.15) can be written in this case as a Hadamard product:

Γn = G′
n �Xn

=




gT
n � xT

n

gT
n−1 � xT

n−1

· · ·
gT
n−K+1 � xT

n−K+1




(5.22)

where the operator � denotes the Hadamard product, i.e. a � b = [a0b0

a1b1 . . . aM−1bM−1

]T
, being a and b two vectors of length M . Therefore,

using (5.22), the update equation of (5.15) can be rewritten in case of PAPA
algorithms as:

wn = wn−1 +αΓT
n

(
δpI+ ΓnX

T
n

)−1
en. (5.23)

Due to the fact that equation (5.21) takes into account the past K−1 realization
of the proportionate elements, the PAPA described in (5.23) can be considered
as an efficient algorithm since this “proportionate memory” increases its
performance [102].

Another advantage of the PAPA in (5.23) is the lower computational
complexity compared with the classical proportionate-type APA, such as
[48, 64, 119]. This is because the matrix Γn in (5.22) can be realized recursively,
since it contains K − 1 rows, whose products are computed in previous itera-
tions. Thus, the rows from 1 to K − 1 of the matrix Γn−1 can be used directly
for computing the matrix Γn, i.e. they become the rows from 2 to K of Γn.
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This is not the case of the classical proportionate-type APA, where all the rows
of Γn have to be evaluated at each iteration, because all of them are multiplied
with the same vector gn. Concluding, the evaluation of Γn in the classical
proportionate APAs needs KM multiplications, while the evaluation of Γn

from (5.22), i.e. considering the “proportionate memory”, requires only M

multiplications. This advantage becomes more apparent when the projection
order increases. Moreover, the fact that Γn has the time-shift property, like the
data matrix Xn, could be a possible opportunity to establish a link with the
fast APA [52, 140]. It is also likely possible to derive efficient ways to compute
the linear system involved in (5.23). This point in particular will address in
the next section.

5.4 PROPORTIONATE BLOCK APA

In this section we propose a variation of the PAPA described in (5.23) based
on the block processing of the input signal [141, 11, 1, 115]. Block processing
is an effective approach to reduce the computational complexity, however in
proportionate case it may assume a further sense due to the time-shift prop-
erties of the proportionate input matrix. In fact, in sample-by-sample PAPA
the time-shift property of the input matrix is the same of the proportionate
matrix allowing a computational saving; however, in proportionate block APA
(PBAPA), the proportionate matrix is still subjected to the same shifting of
PAPA, while the input matrix is subjected to a shift equal to the length of block.
This may initially appear as a drawback since at each iteration the whole data
matrix has to be weighted by the whole proportionate matrix, thus loosing
the computational advantage of PAPA. Moreover, PBAPA may show a slower
convergence rate due to less frequent updating of the adaptive filter. However,
choosing a block length equal to the projection order, the computation cost
remains the same of PAPA due to the fact that the block processing requires
1/K of the iterations compared to PAPA, thus the computational cost results
KM/K = M . Moreover, the different time-shifting properties of Xn and
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Gn can be seen as an interpolation of the proportionate weighting over input
blocks, and this may improve the steady-state behaviour of the filter compared
to PAPA.

The update equation of PBAPA is similar to (5.23); however, at each iter-
ation the input data matrix (5.2) does not receive just a sample but a block
of K samples. Moreover, a further correction term can be introduced to nar-
row the convergence gap with the sample-by-sample PAPA and to develop a
fast version of PBAPA. In addition, it can be also possible to derive efficient
ways to compute the inversion of the covariance matrix by means of recursive
techniques, following what done in [141, 134].

5.5 VARIABLE STEP SIZE PROPORTIONATE
ALGORITHMS

The overall performance of proportionate algorithms is governed by the
step size parameter, which controls the filter trade-off between convergence,
tracking ability and steady state misalignment. A constant value of the step
size can set a priori performance compromise, however, it is not an optimal
solution and in many cases it can produce not satisfying performance. In
particular, this may occur in acoustic applications, in which nonstationary
signals, such as speech, may alter initial conditions. In order to address
this compromise, a variable step size (VSS) may be adopted. Therefore, even
for proportionate algorithms, a performance improvement may be expected
using a variable step size. Considering a variable step size, each element
of the diagonal matrix αn in (5.15) may be different from the others, being
time-varying.

In this section we derive the overall formulation of VSS-based propor-
tionate algorithms, starting from equation (5.15), from which it is possible
to derive the VSS-IPNLMS or the VSS-PAPA in its several versions. We gen-
eralize the proportionate algorithms in order to achieve a better robustness
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also in nonstationary conditions, double-talk events, path changes and under-
modelling situations of the impulse response. For this purpose we introduce
the generalized variable step size proportionate algorithm for under-modelling scenar-
ios.

Under-modelling situations occur when the length of the adaptive filter is
shorter than the length of the echo path, and this is often the rule in acoustic
applications where AIRs are extremely long for a real-time adaptation. Under-
modelling an AIR may introduce an additional noise to the near-end signal,
generated by the part of the system that cannot be modelled. The power of
the under-modelling noise cannot be estimated in a direct way due to the fact
that it is not available in a real scenario. Therefore, its contribution cannot be
evaluated.

Denoting with MA the length of the acoustic impulse response w0, let us
consider an under-modelling situation in which M < MA; it is possible to
break up the data input matrix in the following way:

XUM,n =
[
Xn XA,n

]
(5.24)

where Xn is defined as (5.2), and XA,n ∈ RK×(MA−M) is the data matrix
referred to the under-modelled part of the AIR:

XA,n =




xT
A,n

xT
A,n−1

· · ·
xT

A,n−K+1




T

(5.25)

=




x [n−M ] x [n−M − 1] · · · x [n−MA + 1]

x [n−M − 1] x [n−M − 2] · · · x [n−MA]
...

...
. . .

...
x [n−M −K + 1] x [n−M −K] · · · x [n−K −MA + 2]
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Similarly, in an under-modelling scenario, we can split the AIR in two parts, a
modelled part and an unmodelled one:

w0,UM =
[
w0 w0,A

]
(5.26)

where:

w0 =
[
w0,0 w0,1 . . . w0,M−1

]
(5.27)

and:

w0A =
[
w0,M w0,M+1 . . . w0,MA−1

]
. (5.28)

Let us note that the AIR vectors do not have any time index since they are
assumed to be time invariant.

As a consequence, taking into account K subsequent realizations, the
resulting echo path in under-modelling case, that we denote as xUM,n ∈ RK ,
can be decomposed in a modelled term xn and an unmodelled term xA,n,
which represents the under-modelling noise:

xUM,n = xn + xA,n

= Xnw0 +XA,nw0A

(5.29)

The term xA,n acts like an additional noise for the adaptive process, so that the
desired signal in under-modelling case can be rewritten as:

dUM,n = xn + xA,n + qn (5.30)

where qn is the near-end contribution which can be composed of a near-end
speech signal sn and a near-end background noise vn. In (5.30) we assume that
xn and xA,n are uncorrelated. Now, squaring and then taking the expectations
of both sides of (5.30) results in:
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E
{
d2

UM,n

}
= E

{
x2
n

}
+ E

{
x2

A,n

}
+ E

{
q2
n

}
(5.31)

Moreover, according to the least perturbation property (5.8), we assume that
filter coefficients converge at steady-state, thus:

E
{
x2
n

}
≈ E

{
y2
n

}
(5.32)

where yn = Xnwn−1 is adaptive filter output signal. As a consequence,

E
{
x2

A,n

}
+ E

{
q2
n

}
= E

{
d2

UM,n

}
− E

{
y2
n

}
. (5.33)

Moreover, it is possible to assume that at steady-state the noise contributions
converge to the a posteriori error, defined in (5.4), so taking into account the
energy relation (5.5) it is possible to write:

E
{
x2

A,n

}
+ E

{
q2
n

}
≈ E

{
ε2n

}

= (I−αn) E
{
e2n

}
.

(5.34)

Therefore, replacing (5.34) in (5.33), it is possible to derive an expression of
the variable step size parameter vector:

αn = I−

√
E
{
d2

UM,n

}
− E {y2

n}
E {e2n}

. (5.35)

From a practical point of view, we evaluate the expectations in terms of power
estimates, thus each diagonal element of αn can be written as:

µl [n] =

∣∣∣∣∣∣
1−

√∣∣σ̂2
d [n− l]− σ̂2

y [n− l]
∣∣

σ̂2
e [n− l] + ζ

∣∣∣∣∣∣
(5.36)

where l = 0, . . . ,K−1. Let us note that in order to make the reading clearer, in
(5.36) and in the following we omit the subscript “UM” for the desired signal.
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The general parameter σ̂2
θ [n] represents the power estimate of the sequence

θ [n], considering θ = {d, y, e} and can be computed as:

σ̂2
θ [n] = βσ̂2

θ [n− 1] + (1− β) θ2 [n] (5.37)

where β is a forgetting factor chosen as β = 1 − 1/ (QM), with Q > 1. The
initial value is σ̂2

θ [0] = 0. Furthermore, a small positive number ζ should be
added in (5.37) to avoid division by zero. In order to satisfy the steady-state
approximation (5.34), as suggested in [101], the process starts using a fixed step
size value for the first M iterations when the estimate of the coefficients may be
influenced only by the system noise v [n]. However, even if we do not consider
this “trick”, the experimental results will prove that performance degradation
is not very significant, especially when the value of the projection order is
increased [100]. Another practical consideration is that the computation of the
power estimates in (5.36) could lead to minor deviations from the previous
theoretical conditions; this is the reason why in (5.36) we consider the absolute
value of the step size parameter. Nevertheless, when echo path changes occur,
the power of the estimate of the echo signal σ̂2

y [n] may be larger than the
power of the desired signal σ̂2

d [n]. This is the reason why, in order to avoid
complex values, in (5.36) we take also the absolute value of the difference
under the square root.
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CONSTRAINTS: AN EXPERIMENTAL STUDY
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THE objective of this chapter is to present by means of simulations the
most important features of the proportionate adaptive algorithms
described in the previous chapter. In particular, we analyzed the

behaviour of those algorithms in several conditions and we investigate the
performance of the proposed variations in order to give an overall description
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6.1. AEC experimental conditions
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Fig. 6.1: Acoustic impulse responses used in simulations. (a) Real AIR measured in a low
reverberant room. (b) Simulated AIR with a reverberation time of 130 ms.

of the effectiveness of proportionate algorithms. Most of the experiments
are conducted in acoustic echo cancellation scenarios, which allows to better
comprehend the capabilities of the algorithms.

6.1 AEC EXPERIMENTAL CONDITIONS

In this first part of the chapter we show experiments conducted in the
context of echo cancellation since it is the best acoustic application to evaluate
the effectiveness of an adaptive algorithm.

Experimental simulations in an exact modelling case were performed
using a real echo path measured using a low-cost loudspeaker inside a room
with short reverberation time. This AIR is composed of 320 coefficients and
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it is depicted in Fig. 6.1 (a). When we have considered an under-modelling
scenario, experiments have been conducted using a different AIR, simulated
by means of a Matlab tool, Roomsim [24], and is measured by using an 8
kHz sampling rate. This simulated AIR has been achieved considering a
(10× 6, 6× 3) m room with a reverberation time of T60 ≈ 130 ms. It consists
of 1024 coefficients; however when we consider an under-modelling filter we
truncate it after the first 512 coefficients. The simulated AIR is depicted in its
total length in Fig. 6.1 (b).

The far-end signal, i.e. the input signal, is either a white Gaussian noise
signal or a female speech signal. The output of the echo path is corrupted by an
independent white Gaussian noise (which simulates the near-end background
noise) providing a signal-to-noise ratio (SNR) of 20 dB. All the signals are
evaluated over a length of 10 seconds. Most of the simulations are conducted
in a single-talk case, i.e. in absence of near-end speech input; however, we
also use a double-talk scenario to evaluate VSS-based algorithms.

In addition, we want to prove the effectiveness of the algorithms even in
adverse environment conditions, in which the acoustic environment changes
due to a nonstationary source or to an alteration in the environmental condi-
tions. In order to introduce an abrupt change in the acoustic environment we
shift the AIR circularly to the right by 20 samples, 5 seconds after the start of
the adaptive process.

In order to have a fair comparison we use, where possible, the same
parameter setting for all the algorithms. Performance are evaluated in terms of
normalized misalignment and in many cases also in terms of ERLE (see Section
3.4).
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6.2. Performance advantages of proportionate filters

6.2 PERFORMANCE ADVANTAGES OF
PROPORTIONATE FILTERS

6.2.1 Simplest scenario: exact path modelling in absence of near-
end speech

In the first set of experiments, we evaluate the performance of proportion-
ate algorithms with respect to the correspondent classic ones. We start our
analysis taking into account the simplest algorithms (having unitary projection
order) introduced in Chapter 5, i.e. the normalized least mean squares (NLMS)
(5.16) and its proportionate version that we denote as IPNLMS, as its original
indication [13]. We consider an exact modelling scenario in absence of near-
end speech; the AIR used for these simulations is the one represented in Fig.
6.1 (a). We use the same parameter setting for both the algorithms: a step size

0 1 2 3 4 5 6 7 8 9 10−35

−30

−25

−20

−15

−10

−5

0

Time [seconds]

N
or

m
al

iz
ed

 M
is

al
ig

nm
en

t [
dB

]

NLMS
IPNLMS

Fig. 6.2: Misalignment of NLMS and IPNLMS algorithms with a white Gaussian noise
input.
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value µ = 0.2 and a proportionality factor of α = 0; in addition, we choose a
regularization parameter of δNLMS = 30σ2

x for the NLMS, where σ2
x is the input

signal variance, and a regularization parameter for IPNLMS δp according to
(5.20). When the far-end signal is white Gaussian noise it is simple to certify a
performance improvement of IPNLMS compared to NLMS in terms of con-
vergence rate, as it is possible to see from the behaviour of the normalized
misalignment in Fig. 6.2. The difference between NLMS and IPNLMS is more
evident when the far-end signal is a speech input. Performance of IPNLMS
are clearly improved in terms of filter misalignment, depicted in Fig. 6.3;
moreover, an evident advantage results in the quantity of cancelled echo, i.e.
in terms of ERLE, as it is possible to see in Fig. 6.4.

In Fig. 6.5 we evaluate the misalignment performance of a selection of
PAPA algorithms with different projection order in case of speech input.
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Fig. 6.3: Misalignment of NLMS and IPNLMS algorithms with a female speech input.
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Fig. 6.4: ERLE of NLMS and IPNLMS algorithms with a female speech input. The speech
signal is reported for clearness.
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Fig. 6.5: Misalignment comparison of PAPA algorithms with different projection order in
case of female speech input.
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Let us note that in this case we evaluate only the speech input since the
whitening capabilities of APA algorithms are obviously not evident when the
input signal is already a white signal. From Fig. 6.5 we gather that satisfactory
results can be obtained with a projection order equal to K = 2, or K = 3 at
most.

We have also investigated the behaviour of the PBAPA (see Section 5.4).
We report the comparison between PAPA and PBAPA in Fig. 6.6 in terms of
filter misalignment when the input signal is speech. For both the algorithms
we use a projection order of K = 2.

The behaviour of PBAPA misalignment confirms as said in Section 5.4:
due to its structure the PBAPA overcomes PAPA misalignment at steady-state
while showing poorer convergence performance. Due to this result we can say
that PBAPA could be suited for applications with quite stationary conditions;
however, if we consider AEC scenarios with adverse environment conditions
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Fig. 6.6: Misalignment comparison between PAPA and PBAPA algorithms.
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we still prefer the PAPA.

6.2.2 Exact modelling scenario in adverse environment

In this set of experiments we consider worse environment conditions re-
spect to experiments conducted in the previous section. In a real AEC scenario
several factors can be involved, thus altering the environment conditions,
a source position change rather than an alteration of the environment tem-
perature or the sudden presence of a new interfering source. When such
an alteration occurs, the filter has to be readapted, so in order to achieve
performance improvements an adaptive algorithm must have good tracking
capabilities, i.e. a faster convergence rate in readapting.

We repeat some of the previous most representative experiments only

0 1 2 3 4 5 6 7 8 9 10−16

−14

−12

−10

−8

−6

−4

−2

0

2

4

Time [seconds]

N
or

m
al

iz
ed

 M
is

al
ig

nm
en

t [
dB

]

NLMS
IPNLMS

Fig. 6.7: Misalignment comparison between NLMS and IPNLMS algorithms when a path
change occurs. The far-end input is a female speech signal.
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Fig. 6.8: ERLE of NLMS and IPNLMS algorithms with a female speech input. The AIR
changes at fifth second.

changing the environment conditions, and in particular introducing a path
change, due to an alteration in the environment, which occurs 5 seconds after
the start of the adaptive process. In case of speech input it is possible to see
in Fig. 6.7 that misalignment performance improvement of IPNLMS results
more evident in adverse environment conditions compared to the simpler
scenario in Fig 6.3. Comparing Fig. 6.4 and Fig. 6.8, when a path change
occurs improvements even increase in terms of ERLE, since the behaviour of
IPNLMS always keeps an advantage margin with respect to NLMS. It can be
notice in Fig. 6.8 that the ERLE improvement (in dB) is directly proportional
to the convergence rate; in fact, just after seconds 0 and 5, i.e. in transient
state, the ERLE improvement is small due to a filter adaptation, while a larger
improvement is achieved in steady-state, i.e. in time intervals 1.5 − 5 and
6.5− 10 seconds.
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Fig. 6.9: Misalignment comparison between PAPA and PBAPA algorithms with a white
Gaussian noise input when the echo path changes. PBAPA shows better performance in
steady-state; however, its tracking performance is poorer compared to IPAPA.

We also investigates the behaviour of PAPA algorithms, including the
PBAPA, when the echo path changes. Misalignment performance, depicted
in Fig. 6.9, confirms the analysis done in the previous subsection, i.e. the
PBAPBA provides the best steady-state behaviour while the PAPA shows the
best tracking performance.

6.3 PERFORMANCE ANALYSIS OF
VSS PROPORTIONATE FILTERS

Variable step size algorithms can bring significant improvement according
to the environment conditions. In fact, due to their nature, VSS algorithms
provides tracking performance improvements [124, 99] and this is the reason

88

Chapter 6. ACOUSTIC INTERFACES EXPLOITING SPARSITY CONSTRAINTS

why VSS algorithms are well suited for AEC scenarios with adverse environ-
ment conditions and in presence of double talk. Moreover, VSS algorithms do
not suffer from any under-modelling noise (see Section 5.5) and this allows to
estimate the AIR with shorter length than the exact AIR length.

The variable step size approach introduced in Section 5.5 can be applied to
any proportionate algorithm; however, for a performance analysis purpose
we evaluate the behaviour of VSS-PAPA with a projection order of K = 2. For
the set of experiments conducted in this section we use the AIR simulated in
typical office room and depicted in Fig. 6.1 (b), whose length is MA = 1024.

6.3.1 Under-modelling the acoustic impulse response

In case of exact modelling scenario we set the filter length M = MA while in
under-modelling scenario we halve the exact length, so M = 512. In addition,
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Gaussian noise input. Both algorithms are evaluated in either an exact and an under-modelling
scenario.
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Fig. 6.11: Misalignment comparison between PAPA and VSS-PAPA algorithms with a female
input. The PAPA is evaluated in exact modelling while the VSS-PAPA in under-modelling.

for the computation of the forgetting factor β in (5.37) we choose Q = 6 for
white Gaussian noise input and Q = 20 for speech input.

In Fig. 6.10 we compare the misalignment performance of PAPA and its
VSS version both in exact modelling and under-modelling scenarios using a
white Gaussian noise input. It can be notice that even with a strong under-
modelling of the AIR the VSS-PAPA achieves better performance compared
to PAPAs. In Fig. 6.11 the misalignment comparison is reported in case of
speech input using an exact modelling PAPA filter and an under-modelling
VSS-PAPA filter; also in this case the VSS-PAPA still outperforms the PAPA.
On the other side, not significant improvement is obtained in terms of ERLE,
as depicted in Fig. 6.12, however, for an equivalent ERLE the misalignment
improvement still represents an advantage since it implies a higher quality of
the processed signal in perceptive terms.
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Fig. 6.12: ERLE comparison between PAPA and VSS-PAPA algorithms with a female input.
The PAPA is evaluated in exact modelling while the VSS-PAPA in under-modelling.

6.3.2 Robustness against double talk

Another situation in which the VSS algorithms result effective is in pres-
ence of double talk, i.e. when a near-end speech is present and is superimposed
over the echo path. In fact in this case it results very difficult to cancel the
echo contribution without eating away at near-end speech. The performance
of an echo canceller during double talk is an important measurement because
near-end speech often causes divergence, especially at high convergence rate.
In order to solve this problem a double talk detector (DTD) is usually adopted
[57], which stops the filter adaptation in presence of double talk in order to pre-
serve the near-end speech. A DTD is a good method to meet the contradictory
requirement of low divergence rate and fast convergence in echo cancellation.

DTDs can mostly be classified into energy-based or correlation-based
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techniques. The most popular representative of energy-based DTDs is the
Geigel algorithm [39]. It is based on an observation that the energy of echo
is typically much smaller than the energy of far-end speech. Therefore, if
the near-end speech is present, the energy of the desired signal increases.
The Geigel DTD detects the near-end signals by comparing the magnitude
of current far-end sample and the maximum magnitude of the recent past
samples of the near-end signals, which means declaring double talk when:

|d [n]| = τ max {|x [n]| , . . . , |x [n−M + 1]|} (6.1)

The parameter τ is a threshold usually set to 0.5 based on the assumption
of 6 dB hybrid attenuation. Once the double talk is declared, the updates is
inhibited for some hangover time in order to reduce the miss of detection.
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Fig. 6.14: Misalignment comparison between VSS-PAPA algorithms with and without a
DTD in presence of double talk. In both the cases an under-modelling of the AIR is considered.
The near-end speech and the double talk detections are reported for clearness.

However, a DTD is not always a good solution and often it is necessary a
strong DTD to preserve the intelligibility of the near-end speech. The strength
of the VSS is that it is able to govern the adaptation when a double talk occur,
so there is no further need of using any DTD.

Here we consider the same scenario of the previous set of experiments
just adding a near-end speech contribution in the time interval 4− 6 seconds
in order to simulate a double talk situation. We compare APA, PAPA and
VSS-PAPA algorithms in presence of double talk. For APA and PAPA, we use
a Geigel DTD with τ = 0.5 and a hangover time equal to 200 samples; on the
other side, we use a VSS-PAPA without any DTD and moreover in an under-
modelling of the AIR. In Fig. 6.13 it is possible to see that, despite VSS-PAPA
is without DTD, it achieves the best misalignment performance compared to
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other algorithms. In Fig. 6.14, it is possible to verify that a VSS-PAPA without
DTD achieves almost the same performance of a VSS-PAPA with DTD, or
rather better performance due to the fact that sometimes the DTD may detect
a false alarm, so the algorithm stops the adaptation when it should not.
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PART III

NONLINEAR ADAPTIVE
ALGORITHMS

—The best material model of a cat
is another, or preferably the same, cat.

Norbert Wiener
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CONSEQUENCE OF NONLINEARITIES ON HANDS-FREE

ACOUSTIC APPLICATIONS
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ONE of the most important limitations of acoustic interfaces in hands-
free environments is their inability to effectively cancel or reduce
nonlinear interfering signals which impair the speech intelligibil-

ity. Nonlinearities in acoustic applications are mainly caused by loudspeakers
during large signal peaks; this is the reason why, in this chapter and in the fol-
lowing ones, we focus on applications of nonlinear acoustic echo cancellation
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where the loudspeaker distortions may affect the echo signal. In this chapter
we introduce the problem of nonlinearities and how to address it in acoustic
echo cancellation.

7.1 LIMITATIONS OF ACOUSTIC INTERFACES
DUE TO NONLINEAR INTERFERING SIGNALS

As said in Chapter 3, the limitations of acoustic interfaces for hands-free
applications include circuit and DSP noise, acoustic reverberation, nonstation-
ary signal sources, under-modelling of the AIR, double talk, and in Chapters
5-6 we investigates some algorithms able to tackle these limitations. However,
another important limitation is caused by nonlinear interfering sources which
draws a significant line at the achievable sound quality. Nonlinearities can be
generated by loudspeakers during large signal peaks or by the vibration of the
loudspeaker shell which often may be a plastic enclosure; this is the reason
why the acoustic application most subjected to nonlinearities is the acoustic
echo cancellation due to the acoustic coupling between a microphone and a
loudspeaker.

The presence of nonlinearities in acoustic echo paths affects the perfor-
mance of a conventional AEC compromising the quality requirements of
speech communications. In recent years, this topic has become even more
sensible matter of interest, due to the growing spread of low-cost commer-
cial hands-free systems, which are often composed of poor quality elements,
most of all electronic components, such amplifiers and loudspeakers, and
covering materials, such as plastic shells. These devices may cause significant
nonlinearities in AIRs leading to perceptual quality degradation of speech
[18, 147]. In order to tackle this problem, nonlinear acoustic echo cancellers
(NAECs) are employed, thus resulting in nonlinear path modelling and speech
enhancement.

In recent years, different structures have been investigated in order to
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model the nonlinearities rebounding on acoustic echo paths. A prevalent
technique is based on the use of nonlinear transformations, able to compensate
different kinds of distortions [63, 46, 106, 147]. A raised-cosine function is used
in [63] to model both soft-clipping and hard-clipping nonlinearities. In [46], a
two-parameter sigmoid function is proposed, whose slope and amplitude can
be updated during the learning process. Another adaptive sigmoid function
is used in [106] to evaluate NAEC performance as reverberation time changes.
A more flexible solution is proposed in [147] by using spline functions, that are
smooth parametric curves defined by interpolation of properly control points
collected in a look-up table [148]. Block-based Wiener-Hammerstein models
using nonlinear functions are also investigated [32, 123, 121].

Even if NAECs using nonlinear functions provide good performance, the
most popular nonlinear model for echo cancelling applications is based on
adaptive Volterra filters (VFs). The generic structure of VFs derives from the
well-known Taylor series, and it can be considered as a straightforward gener-
alization of linear adaptive filters [86]. Thus, due to its nature, VFs can model
a large range of nonlinearities, both with memory and memoryless [137, 56].
However, acoustic echo cancellation, as well as other hands-free applications,
requires large adaptive filter order to model the AIR [120]. Therefore, since
computational complexity is proportional to the number of filter coefficients,
the adaptation of VFs can become prohibitively expansive, compromising
real-time implementation. Moreover, the limitation of Volterra series expan-
sion are similar to those of the Taylor series expansion, thus some types
of nonlinearities cannot be modelled by Volterra series, e.g. hard clipping
nonlinearities. In recent years Volterra models with reduced computational
complexity have been investigated to make real-time implementation possible
[43, 44, 138, 47, 10]. However, even in this case an expansion order larger
than two has been hardly adopted, due to the complications in adapting such
systems and controlling learning rates.
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7.2 NONLINEARITY EFFECT ON THE
PERFORMANCE OF AN AEC

Before introducing some nonlinear models it is convenient to investigate
and analyse the consequence of nonlinearities from a performance perspective.
We analyse a loudspeaker model using a real loudspeaker as a case study. Then
we show how a nonlinearity of such loudspeaker deteriorates the performance
of a conventional AEC.

7.2.1 Nonlinearities in the echo transmission chain

In studying the effects of distortion caused by a loudspeaker, many authors
adopted a simplified circuit model of the electro-mechanical-acoustic trans-
ducer [70, 19, 56, 136, 137]. An approximation of the loudspeaker model can
be justified analysing the kind of nonlinearities involved in the transmission
chain, depicted in Fig. 7.1, as done in [138].

The main source of nonlinearities is found in part B (see Fig. 7.1), since the
loudspeaker and the power amplifier are operated at the highest signal level
of the transmission chain. This part of the system is assumed to be weakly
time-variant, e.g. due to temperature drift. The acoustic echo path C is known
to be linear and time-variant, while the microphone and the amplifier C can be
modeled as linear shift-invariant (LSI) systems (see Paragraph 3.1.1) because of
their low signal amplitudes. Also the nonlinear quantization of the A/D and
D/A converters can be neglected in this context. If nonlinear distortions are

A B C

D
A

A
D

 x n  d n

Fig. 7.1: Echo transmission chain.
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mainly caused by an overdriven amplifier, they are approximately memoryless
and can be modeled by a saturation curve [136, 96]. In particular, in [96], parts
A and C of Fig. 7.1 are modelled with adaptive FIR filters and part B is realized
by a saturation curve with one adaptive parameter. However, the adaptation
of the whole system results computationally very demanding. On the other
side, in [136], a system with non-adaptive nonlinearity models part A in Fig.
7.1 as a delay, part B by a 7-th order polynomial, and part C as a classical
NLMS adaptive filter. With negligible additional effort an ERLE improvement
is obtained, without affecting convergence properties of the adaptive filter.
However, experiments in [138] show, that both systems obtain their good
results only if the major cause of nonlinearities is a clipping amplifier. In
many non-portable applications, like smartphones, the power amplifier is
not necessarily overdriven, but it is still desiderata to operate a small, cheap
speaker at its power limit. With such an echo path the systems in [136] and
[96] do not achieve remarkable ERLE improvements. This shows the need
to develop another kind of nonlinear echo canceller which is appropriate for
systems with loudspeaker nonlinearities.

This kind of nonlinearity is caused by the loudspeaker [49], especially
when it is operated at its power limit. Due to the long time constants of the
electro-mechanical system, the memory of this nonlinear behaviour cannot be
neglected, as confirmed in [138]. To combat this type of nonlinearity, adaptive
systems with memory are required. A time-delay neural network, being such a
system, is proposed in [19]. With a cascade of a time-delay neural network and
an adaptive FIR filter, considerable improvement of nonlinear echo reduction
is achieved. A disadvantage is the need for a second reference microphone
to provide an error signal for the adaptive neural network. In [143], adaptive
VFs have been proposed for line echo cancelling. However, due to their high
numerical complexity they have not been used in practical systems yet. In
[138], an acoustic echo canceller with a second order adaptive Volterra filter
has been developed and a method that keeps the computational complexity
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modest is proposed. From then on, other works have been proposed using
Volterra models, as previously said in Section 7.1.

7.2.2 Loudspeaker identification by means of a neural network

In order to prove to evaluate nonlinear models in presence of distortions
caused by a loudspeaker, we exploit the generalization capabilities of an artifi-
cial neural networks (ANN) [60] to obtain a functional model of a loudspeaker.
In order to obtain adequate examples for the training of an ANN, we use
data collected in a thesis work [112]. Data consists of 11 signals with linearly
increasing amplitude including sinusoidal sweeps with frequency rate from
10 to 500 Hz in 16 bit wave form with a sample rate of 48 kHz. These signals

Electrical resistance [Ω] 11.06

Mechanical compliance of driven suspension 0.14E-0.3

Loudspeaker resonance frequency [Hz] 77.19

Equivalent acoustic volume 64.9E-03

Mechanical stiffness of driver suspension [N/m] 4.08

Force factor [N/A] 14.8

Electric Q factor 0.73

Sound Pressure Level 99.649

Total Q factor 0.62

Efficiency 3.95%

Equivalent inductance [mH] 1.15

Equivalent piston area
[
m2

]
56.8E-03

Nominal impedance [Ω] 16

Mechanical mass of the driven diaphragm [g] 29.7

Table 7.1: Technical description of the loudspeaker model APW300, S.I.P.E. S.P.A. Electroa-
coustics.
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are used to excite a commercial loudspeaker, model APW300, produced by
S.I.P.E. S.P.A. Electroacustics in Chiaravalle (AN), Italy, whose technical data
are reposted in Table 7.1 and whose frequency response is depicted in Fig.
7.2. Measurements are conducted in an anechoic room in order to avoid any
reverberations; all the data are finally decimate at 2 kHz.

We use a dynamic ANN with 20 inputs (10 MA and 10 AR), with 12 spline
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Fig. 7.2: Frequency response of the loudspeaker APW300 at 1 W and 100 W. The red line is
the fundamental harmonic, the green line is the second harmonic and the blue line is the third
harmonic.
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Fig. 7.3: Comparison between the harmonic distortion of the loudspeaker APW300 (a) and
the neural loudspeaker model (b). The input signal is a sweep.
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Fig. 7.4: Distortion effect of the neural loudspeaker model (a) on a sine at 80 Hz and (b)
on a sine at 250 Hz. Being a professional loudspeaker the distortion is more evident at low
frequencies.

neurons [55, 113] with 28 points and fixed step ∆x = 0.5. A backpropagation
algorithm is used as learning rule; however, the learning rate is normalized
with a quantity proportional to the input signal energy. In order to evaluate
the distortion produced by this loudspeaker and the identification capability
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of the adopted ANN it is possible to compare Fig. 7.3 (a) and Fig. 7.3 (b).
The distortion effect of the neural loudspeaker model is depicted in Fig.

7.4 where it is clear that, being the APW300 a professional loudspeaker, non-
linearities affect a signal at low frequencies, so that a sine at 80 Hz results
more distorted than a sine at 250 Hz. However, this is sufficient to produce a
worsening in the performance of an AEC.

7.2.3 Performance worsening in an AEC process

In order to evaluate the loss of quality caused by loudspeaker distortions
in an AEC process, we compare AEC performance using both an ideal purely
linear model and the neural loudspeaker model previously described. We use
a common hands-free scenario of a typical office room with a reverberation
time of T60 ≈ 130 ms, thus resulting the AIR depicted in Fig. 6.1 (b). We
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Fig. 7.5: Loss of quality in terms of ERLE caused by loudspeaker distortions when the far-end
input is a white Gaussian noise.
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Fig. 7.6: Loss of quality in terms of ERLE caused by loudspeaker distortions when the far-end
input is a coloured noise. The dotted line represents the average performance in the linear case
which clarifies the difference from the nonlinear performance.

evaluate performance in terms of ERLE in three cases: when the far-end signal
is a white Gaussian noise with zero mean and unitary variance, when the
far-end signal is a coloured noise obtained through an autoregressive process
of the white Gaussian noise signal, and eventually when the far-end input is
a female speech signal. In all the cases an additive white Gaussian noise is
added providing 20 dB of SNR in order to simulate some near-end background
noise.

In Fig. 7.5, AEC performance in terms of ERLE is represented when the
far-end signal is white Gaussian noise. The black line represents the ERLE
performance in absence of distortions while the red line denotes the ERLE
performance in presence of loudspeaker distortions. It is quite evident from
this graph that the presence of distortions in the echo signal causes a loss
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Fig. 7.7: Loss of quality in terms of ERLE caused by loudspeaker distortions when the far-end
input is a female speech signal.

of quality of about 3 dB. The gap between performance in absence and in
presence of distortions is more evident when the far-end signal is a coloured
signal, i.e. a speech-like signal, as it is possible to see in Fig. 7.6, when the
loss of quality is comprised on average within the range from about 3 to
7 dB. A confirmation of this trend is achieved when the far-end signal is
a speech signal, as depicted in Fig. 7.7, where the loss of quality is larger
than 7 dB in some peak of the signal. These results show that in hands-free
acoustic applications, even with a professional loudspeaker, an important
loss of quality can be obtained in presence of nonlinearities. Let us note that
the performance in the linear ideal case represents the maximum achievable
quality. Therefore an NAEC may improve the performance of an AEC in
presence of distortions and may reach at most the achievable performance,
thus we may expect to plug the performance gap as much as possible.
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THIS chapter introduces a new class of nonlinear filters, whose struc-
ture is based on Hammerstein model. The functional link adaptive
filters (FLAF) are defined by a nonlinear input expansion, which en-

hances the representation of the input signal through a projection in a higher
dimensional space, and a subsequent linear filtering. The most important ele-
ment of a functional link adaptive filter is the nonlinear expansion, in which
the a set of functional links processes the input signal allowing an enhanced
modelling of nonlinearities. The functional expansion block allows to design
a suitable filter according to scopes and field of application. This flexibil-
ity enables the filter to find the optimal trade-off between performance and
computational complexity, according to the specifications of the problem.

8.1 INTRODUCTION

The problem of modelling linear systems has been widely tackled in last
decades [116, 69] and, nowadays, it may be considered definitely solved. A
linear system can be considered as a white box, since all information necessary
to describe the system is available. Therefore, an effective estimate of the
impulse response of a linear system may be achieved by using linear adaptive
filtering algorithms [120, 59]. However, real-world systems often involve some
degree of nonlinearity. In particular, if a system introduces a weak degree of
nonlinearity it can be considered as a grey box, since, although information
concerning the system is not entirely known, a linear approximation may be
adopted. However, if a system shows a strong degree of nonlinearity it can be
considered as a black box, since no information concerning the system is a priori
available, thus a nonlinear system identification technique must be taken into
account [157].
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A popular approach to the problem of nonlinear system identification is
the use of a cascade of a linear dynamic system and a memoryless nonlinear
function. This kind of model is known in literature as Wiener model [97, 157].
On the other side, a cascade of a memoryless nonlinear function and a linear
dynamic system is a very useful system in many practical applications and
it is known as Hammerstein model [97]. Among the several other solutions
to nonlinear filtering problem, one of the most popular technique proposed
in literature is based on the so-called polynomial filters [86], which is a quite
general model for nonlinear filtering. In this kind of filters, the adaptive
nonlinearity consists in a polynomial-type nonlinearity: the filter output can
be evaluated from its input through a polynomial model, truncated to a
suitable order.

A particular case of polynomial filters is represented by Volterra filters
[150]. The Volterra model can be very effectiveness in many practical applica-
tions, however, as said in Section 7.1, its computational cost may be very huge
due the enormous number of coefficients required for higher-order kernels.

A more general framework for nonlinear filtering is provided by artificial
neural networks (ANNs) [60], which represent an easily and flexible way to im-
plement a such nonlinear filtering. The nonlinear transformations, applied by
each neuron of an ANN, realize the searched nonlinearity. ANNs are capable
of generating complex mapping between input and output space, therefore,
arbitrarily complex nonlinear decision boundaries can be approximated by
these networks. A drawback of this approach is the high computational cost
of such a network. A particular type of ANN with reduced computational cost
is characterized by activation functions implemented as flexible spline nonlinear
functions, which are piecewise polynomials [148, 55, 129]. The term spline, in
fact, comes from the flexible spline devices used by drafters to draw smooth
shapes. Such networks, due to the adaptability of their activation functions,
can solve hard problems with a low number of neurons [114].

In this chapter, we propose a novel nonlinear adaptive filtering model
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based on functional links. The functional link is a functional operator which
allows to represent an input pattern in a feature space where its processing
turns out to be enhanced. The functional links have been initially proposed by
Pao [103] with the aim of developing a class of single-layer feedforward neural
networks, known as functional link artificial neural networks (FLANNs). Pao has
shown that FLANN may be conveniently used for function approximation
and pattern recognition with faster convergence rate and lesser computational
load than a multi-layer perceptron (MLP) ANN [103]. The FLANN is basically
a flat net and the removal of the hidden layer allows a very simple use of
the backpropagation learning algorithm [103, 60]. Functional links have been
used for many applications, ranging from pattern recognition [104] to process
control [128].

In this research study we develop a novel nonlinear model based on
functional links that is not built on an ANN but on an adaptive filter structure.
Such model, named functional link adaptive filter (FLAF), exploits the nonlinear
modelling capabilities of functional links and the filtering properties of linear
adaptive algorithms, which are definitely less computationally expensive than
ANNs, thus resulting an effective tool to model nonlinearities (especially) in
acoustic applications.

8.2 NONLINEAR SYSTEM IDENTIFICATION
PROBLEM

Before describing the proposed nonlinear model, we briefly introduce a
problem formulation concerning the nonlinear system identification. It needs
to notice that the correspondent acoustic application of nonlinear system
identification is the nonlinear acoustic echo cancellation, that we address in
the next chapter.

A nonlinear system identification problem based on a Hammerstein model
is depicted in Fig. 8.1, in which it is possible to notice that the desired sig-
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Fig. 8.1: Hammerstein-based nonlinear system identification scheme.

nal d [n] results from the convolution between the input signal x [n] and the
unknown system to identify, denoted as:

wopt =
(
xT
nxn

)−1
xnd [n] (8.1)

as it is the optimal solution that solves the least-mean squares problem:

min
w

E
{∣∣d [n]− xT

nxn−1

∣∣2} . (8.2)

In a Hammerstein model the system to identify is preceded by a nonlinearity
which is a priori unknown and may only be approximated. Therefore the
identification of a Hammerstein model strictly depends on the nonlinearity
upstream the filter.

In Fig. 8.1 it is possible to notice that the signal x [n] is fed into a nonlinear
system, thus the input signal to the unknown system gets to be u [n] = f (u [n]).
Therefore the desired signal is:

d [n] = uT
nw

opt + v [n] (8.3)
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where v [n] is an additive noise, usually a white Gaussian noise with zero mean
and unitary variance, thus resulting independent and identically distributed
(i.i.d.). Consequently, the adaptive nonlinear filter, that aims at identifying the
unknown system, is composed of a linear adaptive algorithm preceded by an
artificial nonlinearity f̂ (·), which aims at approximating the nonlinearity of
the unknown system. Therefore, the nonlinear input to the linear adaptive
filter is denoted as g [n] = f̂ (x [n]).

The scheme depicted in Fig. 8.1 is generic for a system identification
problem based on a Hammerstein model; with some specific changes, it allows
to analyze a wide class of adaptive nonlinear filters based on Hammerstein
model and described by the following adaptation rule:

wn = wn−1 + µgnγ (e [n]) (8.4)

where γ (·) represents some function of the a priori output error signal:

e [n] = d [n]− gT
nwn−1. (8.5)

Therefore, the scope is to define a suitable nonlinear function f̂ (·), which
allows, through the update of an adaptive filter wn, to minimize the mean
square error.

8.3 FUNCTIONAL LINK ADAPTIVE FILTERS

8.3.1 Functional link approach

The main idea which underpins our FLAF approach is that of asking
whether it might be possible to enhance the original representation right from
the start in a linearly independent manner. A way of enhancing the original
input signal is to represent it in a space of higher dimension [103]. This
process derives directly from the machine learning theory, and more exactly
from Cover’s Theorem on the separability of patterns [60]. Size and nature of

114

Chapter 8. FLAF: A NEW CLASS OF NONLINEAR FILTERS

Fu
nc

tio
na

l E
xp

an
si

on
 B

lo
ck

 1x n 

A
da

pt
iv

e 
Fi

lte
rz-1

z-1

 x n

 1x n M 

 0g n

 1g n

 1eMg n

 d n

 y n

 e n

Fig. 8.2: The functional link adaptive filter.

the enhanced space are described by the functional links chosen to perform
the nonlinear filtering. The functional link adaptive filtering is carried out in
two stages: a nonlinear functional expansion of the input and a subsequent
linear filtering, as it is possible to see in Fig. 8.2.

At n-th time instant FLAF receives an input buffer xn ∈ RM = [x [n]

x [n− 1] . . . x [n−M + 1]
]T

, where M is the input buffer length; differ-
ently from the linear weighting carried out by a linear filter, FLAF processes
the input buffer by means of a functional expansion block (FEB). The FEB gener-
ates a series of linearly independent functions, which might be a subset of a
complete set of orthonormal basis functions, satisfying universal approxima-
tion constraints [34]. The term functional links actually refers to this series of
functions. The FEB processes the input buffer by passing each element of the
buffer as argument for the chosen functions. The described process results in
an expanded buffer gn, whose length is Me ≥ M . A deeper description of the
expansion process will be drawn in Subsection 8.3.2.
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In one sense, no new ad hoc information has been inserted into the pro-
cess; however, the representation of the original buffer has been definitely
expanded, and nonlinear modeling becomes possible in the expanded space.
Once achieved the expanded buffer, the functional link adaptive filtering pro-
cess is completed simply linearly filtering the expanded buffer. This aspect
is an important theoretical novelty, with respect to the original formulation
of functional links [103] and their recent use [162, 125], due to the significant
advantages that it provides to FLAF, as described in Subsection 8.3.4.

8.3.2 Nonlinear input expansion

The most important element of the FLAF is the FEB, whose processing
plays a leading role in the nonlinear modelling. The expansion process carried
out by the FEB is depicted in Fig. 8.3, where it is possible to see how the input
buffer xn is projected in a higher dimensional space yielding the expanded
buffer.

At n-th time instant, the i-th sample of the input buffer x [n− i], being
i = 0, 1, . . . ,M − 1, is expanded by means of a chosen set of functional links
Φ =

{
ϕ0 (·) ,ϕ1 (·) , . . . ,ϕQ−1 (·)

}
, where Q is the number of functional links

of the chosen set Φ.

The effectiveness of the FEB relies on two main feature of the chosen set of
functional links Φ. The first feature will be detailed in Section 8.4 and concerns
the nature of the expansion and, therefore, the choice of the functional links.
The second feature is the correspondence between the input and the output
samples of the FEB which can be characterized by the choice of taking into
account some memory of the input buffer. This feature will be described in
Section 8.5. The former feature depends on the kind of scenario of application
and on the nature of involved signals; on the other hand, the latter feature
depends on the nature of the input signal and, more specifically, on the kind
of distortion which affects the desired signal.
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8.3.3 FLAF learning algorithm

Once chosen the set of basis functions, the problem focuses on finding out
the coefficients of the FLAF weight vector wn ∈ RMe , defined as:

wn =
[
w0 [n] w1 [n] . . . wMe−1 [n]

]T
, (8.6)

in order to yield the best possible approximation of the nonlinear model within
a small error value ε. Therefore, the explicit representation of the FLAF error
signal e [n] is:

Input buffer Expanded buffer

 1x n M 

 1x n 

 x n

 0g n

 1g n

 2g n

 2eMg n

 1eMg n

Fig. 8.3: Functional link expansion.
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e [n] = d [n]− y [n]

= d [n]− gT
nwn−1

(8.7)

whose minimization depends on a proper estimate of the weights of the filter
wn. In order to find the coefficients of wn it is possible to use any adaptive
algorithm based on gradient descent rule [120]. In this work we use linear
adaptive algorithms based on stochastic gradient rule (see Chapter 4) to adapt
the filter coefficients.

8.3.4 Advantages and drawbacks of FLAF

The use of FLAF entails several attractive advantages. Firstly, FLAF has
a hugely flexible architecture due to its scalable nonlinear expansion and
to its scalable structural complexity. The former property allows to choose
a priori a suitable series of functional links according to the application of
interest. On the other hand, the latter property allows to deal with high
dimension input signals, modelling the FEB structure in order to find the right
trade-off between performance and computational complexity, according to
application requirements and disposable computational resources. Moreover,
the flexibility of FLAF architecture allows an easy integration of any a priori
knowledge of a certain nonlinear system.

Furthermore, it is well known that the introduction of high-order functions
in FLAF structure entails an increase of the learning rate [72] and a robust
generalizing ability [90]. This property becomes more solid in FLAF, compared
to FLANN [109, 72], due to the abilities to exploits the theory of linear adaptive
filters [120] by using fast learning algorithms. In addition, the use of a linear
filter provides FLAF with significant tracking capabilities that makes it suitable
for DSP applications.

However, FLAF might also show some drawbacks, mainly caused by
certain applications. A substantial difficulty might be definitely caused by
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the extreme flexibility of the architecture and in particular by the lack of a
well-defined choice of an optimum nonlinear expansion and by a possible
need of an a priori knowledge of the nonlinear system to design the expansion.
Actually FLAF performance is strictly sensitive to the choice of nonlinear
functions. Another drawback is that FLAF might incur in a biased convergence
resulting in a non-optimum estimation [83, 135]. The described drawbacks
will be certainly matter of future researches.

8.4 CHOICE OF FUNCTIONAL EXPANSION TYPE

The functional expansion process can be designed according to models
and signals involved in the application. An important choice in the FEB design
concerns the expansion type, i.e. the basis functions, or a subset of it, to assign
for each functional link. This choice mostly depends on the application and in
particular on the signals involved in the processing.

8.4.1 Choosing a proper set of functional links

The FLAF structure is a cascade of a nonlinear expansion and a linear
filter; therefore the learning of a FLAF aims at approximating a continuous
multivariate function f (xn). In FLAF, the approximating function f̂ (xn) is
represented by a set of basis functions and by the coefficients of the adaptive
filter wn. Inside the functional expansion process, a critical point is enacted by
the choice of the complete set of orthonormal basis functions and its subset,
which represents the functional links actually used. We start to analyze this
problem by using a mathematical derivation.

Let I be a compact simply connected subset of Rn and Lm (I) be the subset
of Lebesgue measurable functions f̂ : I ⊂ Rn → Rm such that the supremum
norm of f̂ , denoted as

∥∥∥f̂
∥∥∥
I

is bounded, i.e.
∥∥∥f̂

∥∥∥
I
= supxn∈I

∣∣∣f̂ (xn)
∣∣∣ < ∞.

The space of all continuous functions f̂ : I → Rm is a subset of Lm (I) and
it is denoted as Cm (I). Let BQ =

{
ϕj

}Q

j=0
be a subset of basis functions of a
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linearly independent set BQ ∈ Lm (I). Being f̂ (xn) a continuous function over
a compact set, according to the Stone-Weierstrass theorem [139], there exist
several subsets of B that can uniformly approximate f̂ (xn) by a discriminant:

f̂ (xn) =
M−1∑
i=0

Q−1∑
j=0

ϕj (x [n− i])w [n− iQ− j − 1]

= gT
nwn−1

(8.8)

such that:

max
xn∈I

∣∣∣f (xn)− f̂ (xn)
∣∣∣ < ε (8.9)

where ε is a small threshold, xn ∈ I ⊂ Rn is the FLAF input and f̂ (xn)

represents the FLAF output signal, also denoted as y [n].

8.4.2 Most popular functional link sets

The solution of equation (8.8) depends on the existence of the inverse of
the correlation matrix of the enhanced buffer. This can be assured by choosing
a proper set of basis functions, which have to be linearly independent. Basis
functions satisfying this property may be a subset of orthogonal polynomials,
like Chebyshev [91], Legendre [107] and trigonometric polynomials [103], or
just approximating functions, such as sigmoid [92] and Gaussian functions
[22]. In the following we deal with the most employed functional link bases.

Trigonometric basis functions

It has been pointed out that when trigonometric polynomials are used in
upstream, i.e. before the adaptive filtering, the weight estimate will approxi-
mate the desired impulse response in terms of multidimensional Fourier series
decomposition [154]. In particular, compared with other orthogonal basis func-
tions, trigonometric polynomials provide the best compact representation of
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any nonlinear function in the mean square sense, even for nonlinear dynamic
systems as proved in [109]. Moreover, trigonometric functions are computa-
tionally cheaper than power series-based polynomials. Due to its properties,
trigonometric polynomial functions are very popular in functional link expan-
sion, ranging from from function approximation applications [103, 72] and
channel equalization [162] to active noise control applications [125]. Func-
tional links with trigonometric functions are also used for dynamic system
identification [109].

It is possible to generalized the set of functional links using trigonometric
basis expansion in the following way:

gj [n] =




x [n− i] , j = 0

sin (pπx [n− i]) , j = 2p+ 1

cos (pπx [n− i]) , j = 2p+ 2

(8.10)

where j = 0, . . . , Q− 1 is the functional link index, and p = 0, . . . , P − 1 is the
expansion index, being P the expansion order. In (8.10) it is possible to notice
that the first element of the set of functional links, ϕ0 (x [n− i]), is the replica
of the current i-th input sample. In this way, the expanded buffer contains
both linear and nonlinear elements.

Chebyshev polynomial functions

It is well known that Chebyshev polynomial functions are endowed with
powerful nonlinear approximation capability [76]. This is the reason why their
use is widespread in different fields of application. In particular, Chebyshev
polynomials have been widely used both in pattern classification [91] and in
functional approximation [76] problems. These works pointed out that an
ANN with Chebyshev polynomial expansion has universal approximation
capability and faster convergence than a MLP network. Moreover, Cheby-
shev polynomials were also used in FLANN structure [108] for the problem
of identification of nonlinear dynamic systems in presence of input plant
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noise, showing a strong effectiveness. Furthermore, FLANN using Chebyshev
expansion has been used in channel equalization [151, 161].

The effectiveness of Chebyshev polynomials is mainly due to the fact
that the Chebyshev expansion of an input entry includes functions of the
previous functions. Moreover, Chebyshev expansion is based on power series
expansion, which may approximate a nonlinear function with a very small
error near the point of expansion. However, far from the point of expansion,
the error increases rapidly [35]. With reference to other power series of the
same degree, Chebyshev polynomials are quite computationally cheap and
more efficient [76], and this is the reason why they are frequently used for
function approximation. However, when the power series converges slowly
the computational cost dramatically increases.

Chebyshev functions are easier to compute with respect to trigonometric
polynomial functions. Taking into account the i-th input sample x [n− i], the
Chebyshev polynomial expansion can be written as:

gj [n] =




1, j = 0

x [n− i] , j = 1

2x2 [n− i]− 1, j = 2

2x [n− i] gj−1 [n]− gj−2 [n] , j = 3, . . . , Q− 1

(8.11)

in which both linear and nonlinear terms are included, similar to the trigono-
metric case (8.10).

Legendre polynomial functions

Similar to Chebyshev polynomials, the Legendre functional links provides
computational advantage while promising better performance [107]. Legendre
polynomial functions have been widely used for function approximation
by means of orthonormal ANN [159] and also functional link based ANN
[111, 107]. Legendre-based quadrature amplitude modulation (QAM) equalizer
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[107] performs better than Radial Basis Function (RBF)-based and linear FIR-
based equalizers; however, its performance is similar to that of Chebyshev-
based equalizer [110].

Considering the i-th input sample x [n− i], the Legendre polynomials are
given by:

gj [n] =




1, j = 0

x [n− i] , j = 1(
3x2 [n− i]− 1

)
/2, j = 2

{(2j − 1)x [n− i] gj−1 [n]− (j − 1) gj−2 [n]} /j, j = 3, . . . , Q− 1

(8.12)

where, as the previous two cases, both linear and nonlinear elements are
involved.

8.5 MEMORY AND MEMORYLESS FLAF

In addition to the choice of considering the type of functional link set,
another important choice in the FLAF design concerns the memory of the
input buffer, which bears on the correspondence between samples of the input
buffer and those of the expanded buffer. The choice of taking into account
some memory is strictly related to the nature of the input signal. In particular,
it depends a lot on the type of nonlinearity which deteriorates the input signal,
in particular on whether the nonlinearity is instantaneous, i.e. it is independent
from the time instant, or dynamic, i.e. the nonlinearity depends even on the
time instant.

8.5.1 Memoryless functional links

The simplest and most commonly implemented type of nonlinearity is the
memoryless (or instantaneous) one. Given an input signal x [n], the generic
output of any memoryless nonlinearity can be written as:
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Fig. 8.4: Functional expansion in memoryless FLAF.

y [n] = f (x [n]) (8.13)

where f (·) is some function which maps each input value to a unique output
value [127]. Memoryless nonlinearities are very popular since many complex
nonlinear systems can be broken down into a linear system containing a
memoryless nonlinearity. Memoryless nonlinearities require memoryless FLAF
which generates an unambiguous relation between the input buffer and the
expanded buffer, as depicted in Fig. 8.4.

In a memoryless FLAF, it is possible to define a set Φml of memoryless
functional links, each of which takes one input sample as argument, yielding
the corresponding sample of the expanded buffer. Since the memoryless set
is defined as in Subsection 8.3.2, we omit any subscript and refer to it simply
as Φ. For the first M − 1 input samples we apply the full set of memoryless
functional links Φ =

{
ϕ0 (·) ,ϕ1 (·) , . . . ,ϕQ−1 (·)

}
; however, for the M -th input

sample, we may choose to stop at j-th functional link, with j = 0, . . . , Q− 1,
or to apply the full set Φ, depending on whether we want to control the
expanded buffer length Me or not.
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8.5.2 Functional links with memory

The set of memoryless functional links described above provides a sat-
isfying approximation of a continuous multivariate function, whether the
nonlinearity is instantaneous or dynamic. However, in case of nonlinear dy-
namic systems, better results may be achieved exploiting the flexibility of the

 1x n 
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Fig. 8.5: Functional expansion in FLAF with memory.
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FEB; in particular, it is possible to add to memoryless ones further functional
links which take into account the memory of a certain dynamic nonlinearity.
We refer to the new set Φm =

{
ϕ0 (·) , . . . ,ϕQ−1 (·) ,ϕQ (·) , . . . ,ϕQK−1 (·)

}
as a

set of functional links with memory, where QK > Q is the number of functional
links with memory. A way of considering the memory of a nonlinearity is that
of taking into account the outer products of the i-th input sample with the
functional links of the previous input samples, as depicted in Fig. 8.5.

In designing the FLAF with memory, it is possible to define a memory
order K which determines the length of the additional functional links, i.e. the
depth of the outer products between the i-th input sample and the functional
links related to the previous input samples. Fig. 8.5 shows an expansion with
memory order K = 1.

8.6 MEAN-SQUARE PERFORMANCE ANALYSIS

8.6.1 Energetic approach to performance analysis

Transient and steady-state performance analyses of adaptive algorithms
may be derived considering the expectation and the mean-square of the so-
lution of its stochastic difference equation, which can be described by the
expression (8.4). In particular, such analyses are conducted considering the
asymptotic solution of the stochastic difference equation, defined as the limit,
for n → ∞, of wn. However, the presence of nonlinearities makes this ap-
proach impracticable. An alternative approach for the study of transient and
steady-state performance analyses of adaptive algorithms is based on an energy
conservation relation [120].

We start the derivation considering an important consequence of the data
analysis model depicted in Fig. 8.1. Indeed, due to the independence property
of the additive noise signal [120], it is possible to neglect v [n], thus equation
(8.3) turns into:
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d [n] = uT
nw

opt (8.14)

Therefore, similarly to equation (8.15), it is possible to define the a priori
estimation error as:

ea [n] = uT
nw

opt − gT
nwn−1. (8.15)

which measures how close the nonlinear estimator gT
nwn−1 is to the desired

response d [n]. Similarly, it is possible to the define the a posteriori estimation
error as:

ep [n] = uT
nw

opt − gT
nwn. (8.16)

We consider the generic form (8.4) of the Hammerstein nonlinear adaptive
filter; multiplying both sides of (8.4) by gT

n from the left we obtain:

gT
nwn = gT

nwn−1 − µ ‖gn‖2 γ (e [n]) (8.17)

Then, subtracting (8.17) from the desired response defined in (8.14), we achieve
a relation between the a priori and a posteriori error signals:

ep [n] = ea [n]− µ ‖gn‖2 γ (e [n]) (8.18)

Equation (8.18) provides an alternative description of the stochastic equation
(8.4). Generally, it is possible to analyse the behaviour of an adaptive filter
in terms of estimation errors, ea [n] and ep [n], and in terms of misalignment
vector w̃n = wn −wopt. However, in case of Hammerstein nonlinear filter it
is not possible to take into account the information about the misalignment
vector, thus the estimation errors are the only useful quantities in order to
determine the behaviour of the filter. This is the reason why equation (8.18)
assumes a significant relevance, since it turns out to be the only relation from
which it is possible to accomplish a performance analysis. In particular, it is
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possible to derive the following behaviours:

• Steady-state behaviour, by means of the expectations E
{
|ea [n]|2

}
and

E
{
|e [n]|2

}
.

• Stability, by determining the range of values of the step-size µ over which
E
{
|ea [n]|2

}
remains bounded.

• Transient behaviour, by studying the evolution of the curve E
{
|ea [n]|2

}
.

Therefore, in order to address these behaviours we may deal with an energy
equality that relates the squared norms of the estimation errors.

8.6.2 Derivation of the energy conservation principle

The energy conservation relation does not depend on the error nonlin-
earity γ (·) [120], thus, in order to generalize this approach, it is possible to
use equations (8.18) and (8.4) to solve for γ (·), distinguishing between three
different cases.

1. xn = 0.
The degenerate case is common for any linear adaptive filter and both
Wiener and Hammerstein-based nonlinear filter. xn = 0 implies that
un = gn = 0, therefore it is obvious from (8.4) and (8.18) that wn = wn−1

and ep [n] = ea [n], thus resulting:

‖wn‖2 = ‖wn−1‖2 and |ep [n]|2 = |ea [n]|2 (8.19)

2. xn �= 0, gn = un.
As the previous case, this condition is still common for any linear and
nonlinear adaptive filter. We solve for γ (·) from (8.18), using the con-
straint gn = un, and substitute it into (8.4), obtaining:
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wn = wn−1 −
un

‖un‖2
(ea [n]− ep [n]) (8.20)

It is possible to notice that in equation (8.20) even the step-size µ is
cancelled out. Moreover, in equation (8.20) the two estimation errors
appear. In order to have an equality between the two errors, it is possible
to rearrange equation (8.20):

wn +
un

‖un‖2
ea [n] = wn−1 +

un

‖un‖2
ep [n] . (8.21)

If we evaluate the energy of both sides of (8.21), we find out the following
energy equality:

‖wn‖2 +
1

‖un‖2
|ea [n]|2 = ‖wn−1‖2 +

1

‖un‖2
|ep [n]|2 . (8.22)

in which we do not take into account irrelevant cross-terms in order to
have a fair energy relation.

3. xn �= 0, gn �= un.
The third case is not common for any adaptive filter, but it is specific to
a Hammerstein nonlinear adaptive filter. Similarly to case 2 but without
using any constraint, we solve for γ (·) from (8.18):

γ (e [n]) =
1

µ ‖gn‖2
(ea [n]− ep [n]) (8.23)

and then we substitute γ (e [n]) into (8.4), obtaining:

wn = wn−1 −
gn

‖gn‖2
(ea [n]− ep [n]) (8.24)

and the correspondent energy relation:
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‖wn‖2 +
1

‖gn‖2
|ea [n]|2 = ‖wn−1‖2 +

1

‖gn‖2
|ep [n]|2 . (8.25)

The results achieved in the three different cases can be combined together by
defining a common term µ [n]:

µ [n] =




0, xn = 0

1/ ‖un‖2 , xn �= 0, gn = un

1/ ‖gn‖2 , xn �= 0, gn �= un

(8.26)

Using (8.26), we can combine (8.19), (8.22) and (8.25) into a single identity:

‖wn‖2 + µ [n] |ea [n]|2 = ‖wn−1‖2 + µ [n] |ep [n]|2 (8.27)

which generalizes the energy conservation relation and provides a unifying
framework for the performance analysis of any linear and nonlinear adaptive
filters.

Theorem 1 Energy conservation relation. For any linear adaptive filter and for
both Wiener and Hammerstein model-based nonlinear filter, it always holds that:

‖wn‖2 + µ [n] |ea [n]|2 = ‖wn−1‖2 + µ [n] |ep [n]|2

where ea [n] = uT
nw

opt − gT
nwn−1, ep [n] = uT

nw
opt − gT

nwn, and µ [n] is defined
as in (8.26).
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IN this chapter we apply the nonlinear model of FLAF, described in
the previous chapter, to nonlinear acoustic echo cancellation (NAEC),
which is the correspondent acoustic application of the nonlinear system

identification. As said in Sections 3.2 and 7.1, when nonlinearities occur in the
echo path it is necessary to employ a nonlinear echo canceller in order to reduce
the quality loss and preserve the intelligibility of a speech communication. In
particular, in this chapter we introduce a novel type of FLAF designed ad hoc
to tackle nonlinearities in an NAEC application. Some experimental results
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show that FLAFs are an effective alternative to VFs in NAEC applications1.

9.1 FLAFs FOR ACOUSTIC APPLICATIONS

Flexibility is one of the stronger points of FLAF. However, the FLAF struc-
ture may turn out to be not always optimal depending on applications and
on the nonlinearity degree engendered by an unknown system. This issue is
mainly due to the fact that the FEB expands the whole input buffer. Thereby
the expanded buffer may contain more nonlinear elements than necessary and
an overfitting case may occur, thus resulting in non-optimal filtering perfor-
mance. Moreover, a control over the expanded buffer seems to be problematic,
as the choice of the input buffer length is bound to an accurate estimate of
the acoustic impulse response. Additionally, the choice of optimal parameters
of the adaptive filter, such as the step size, is the same for both linear and
nonlinear elements of the expanded buffer. This is the reason why also this
choice results critical in many situations, in particular when the nonlinearity
degree in the echo path varies in time, as it is often the rule in acoustic echo
cancellation. Due to these changes of the nonlinearity degree, it could be
desirable to have a control over the nonlinearity degree in order to achieve
always the best possible fitting. In that sense, improvements can be achieved
modifying the FLAF structure up to yield the robust filtering architectures,
some of which will be described in this chapter.

9.2 THE SPLIT FUNCTIONAL LINK ADAPTIVE
FILTER

A significant improvement can be achieved separating the adaptation
of linear and nonlinear elements of the expanded buffer. In particular, it is

1The work in this chapter has been partly performed while the author was a visiting Ph.D.
student at the Department of “Teoría de la Señal y Comunicaciones”, at “Universidad Carlos
III de Madrid”.
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Fig. 9.1: The split functional link adaptive filter.

possible to consider two different adaptive filters in parallel, one completely
linear and the other purely nonlinear. The linear filter receives the whole
input buffer and aims only at estimating the echo path. On the other hand, the
nonlinear filter is an FLAF in which the set of functional link does not include
the replica of the linear element, as described in Chapter 8, thus the expanded
buffer is only composed of nonlinear elements.

Therefore, the nonlinear FLAF only aims at modelling the nonlinearity
affecting the echo signal. In this way it is possible to distinguish two different
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filterings with two different settings of the parameters, such that each filter
can accomplish its task at best. Moreover, using this structure, the FEB can
receive the whole input buffer or just a portion of it. This yields a further
degree of freedom compared to the FLAF described in Chapter 8.

We call this filtering architecture Split Functional Link Adaptive Filter (SFLAF),
thus remarking the separation between linear and nonlinear elements of the
expanded buffer compared to the FLAF. The SFLAF structure is depicted in
Fig. 9.1, where it is possible to notice that the SFLAF output signal results
from the sum of the output of the linear filter and the output of the nonlinear
FLAF:

y [n] = yL [n] + yFL [n] (9.1)

in which yL [n] = xT
nwL,n, and where wL,n ∈ RM =

[
w0 [n] w1 [n] . . .

wM−1 [n]
]T

is the coefficient vector of the linear filter, and yFL [n] = gT
nwFL,n,

where wFL,n ∈ RMe =
[
w0 [n] w1 [n] . . . wMe−1 [n]

]T
is coefficient vector

of the nonlinear FLAF.

From Fig. 9.1 it is possible to gather that both linear and nonlinear filters
are adapted using the overall error signal e [n] = d [n]− y [n]. However, each
filter can be adapted using a different adaptation rule and different parameter
settings. This “splitting” feature of FLAFs opens new interesting scenarios
in acoustic applications since it is even more possible to exploit at best the
capabilities of linear adaptive algorithms and the effectiveness of functional
links for acoustic applications. In fact, the flexibility of the FEB and the
possibility to choice the proper adaptive filter, for both the nonlinear and the
linear paths of SFLAF, make the SFLAF a versatile and effective tool for the
modelling of the AIR affected by nonlinearities.
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9.3 EXPERIMENTAL RESULTS

In this section we investigate the performance of the proposed SFLAF
architecture in an echo cancellation scenarios. The scenario is a simulated
teleconferencing environment in which the AIR is the one depicted in Fig. 6.1
(b), corresponding to a reverberation time of T60 ≈ 130 ms, and truncated after
M = 512 samples. In order to introduce a nonlinearity in the echo path which
can simulate a loudspeaker distortion, we apply a symmetrical soft-clipping to
the echo signal before that it activates the echo path according to the scheme in
Fig. 9.2. The soft-clipping distortion is described by the following expression
[165]:

f (x [n]) =




2x [n] for 0 ≤ x [n] ≤ ζ

sign (x [n]) 3−(2−3x[n])2

3 for ζ ≤ x [n] ≤ 2ζ

1 for 2ζ ≤ x [n] ≤ 1

(9.2)

where ζ is a threshold chosen in the range (0 , 0.5]. We obviously suppose that
the input signal is normalized at 1.

Two kinds of input signal are used for this scenarios: a white Gaussian
noise input with zero mean and unitary variance and a female speech input.
Additive Gaussian noise is added at the output of the echo path in order to
provide 20 dB of signal to noise ratio (SNR). The length of the experiments
is t = 10 seconds. In Fig. 9.3 it is possible to see the effect of the nonlinear

SOFT-CLIPPING
(loudspeaker distortion)

LINEAR PATH
(acoustic impulse response)

Fig. 9.2: Scheme of the nonlinearity introduced in the input signal.
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Fig. 9.3: (a) Far-end female speech input signal. (b) Signal acquired by the microphone after
being distorted and reverberated.

distortion on the speech input signal using a clipping threshold of ζ = 1/8.

9.3.1 Performance improvement of SFLAFs

First of all it is important to show the performance improvement brought
by SFLAF compared to FLAF. We use the same parameter setting for both
the FLAF and the SFLAF. The input buffer length is set to Me = M , i.e. for
the FLAF we use a filter length which is the same of the AIR length and for
the SFAF we use the same length for both the linear and nonlinear filters. We
choose an expansion order of P = 5 and a step size parameter of µ = 0.2 for
the FLAF and for both the filters of the SFLAF. Both FLAF and SFLAF are
memoryless. All the adaptive filters are updated using an NLMS algorithm.
We compare the performance of FLAF and SFLAF in terms of ERLE, both
for the white Gaussian noise input and for the female speech input. Results
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Fig. 9.4: Performance comparison in terms of ERLE between an FLAF and an SFLAF in case
of white Gaussian input.
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Fig. 9.5: Performance comparison in terms of ERLE between an FLAF and an SFLAF in case
of female speech input.
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are respectively depicted in Fig. 9.4 and Fig. 9.5 in which is evident the
performance improvement brought by the SFLAF due to the separation of
linear and nonlinear elements. Moreover, it has to be considered that it is also
possible to change some parameters values of the SFLAF, such as the step size
parameter and the input buffer length of the nonlinear path. A proper choice
of such parameters may bring a further improvement of the performance of
the SFLAF in terms of ERLE.

9.3.2 An effective alternative to Volterra filters

In the following set of experiments we compare the overall performance
of an SFLAF with that of a VF, which, as previously said, remains the most
popular NAEC in literature (see Section 7.1). We adopt the parameter setting
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Fig. 9.6: Performance comparison in terms of ERLE between the SFLAF and a 2nd order VF
in case of white Gaussian input.
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Fig. 9.7: Performance comparison in terms of ERLE between the SFLAF and a 2nd order VF
in case of female speech input.

of the previous subsection for the SFLAF, but an expansion order of P = 3.
The same buffer length, step size value and updating algorithm are also used
for the adaptive Volterra filter, which is of the second order. Performance
are evaluated in terms of ERLE for both the white Gaussian input and for
the speech input, and results are respectively depicted in Fig. 9.6 and Fig.
9.7, where also the performance of an NLMS is taken into account as stan-
dard reference. Results show that SFLAF overcomes VF in terms of ERLE
performance, thus resulting an effective alternative to VF for NAEC.

In terms of computational load, an SFLAF results more advantageous
compared with a VF, especially when the SFLAF is memoryless. In a case
like the one investigated, it is more convenient to use a memoryless SFLAF
since the difference with an SFLAF with memory is quite small as it is possible
to see from the comparison in Fig. 9.8. However, when the system may
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Fig. 9.8: Performance comparison in terms of ERLE between an SFLAF with memory and a
memoryless SFLAF.

introduce a more dynamic nonlinearity than the used soft-clipping an SFLAF
with memory may result definitely the best choice. It has to be taken into
account that for speech input the use of an APA instead of the NLMS for the
linear path of the SFLAF may bring further improvements in terms of ERLE.
Further experiments on FLAFs for NAEC can be found in [29, 27].

9.4 CONCLUSIONS

In this chapter we have introduced a new class of nonlinear adaptive
algorithms based on the FLAF model, described in Chapter 8, for acoustic
applications. In particular, we have investigated the performance of the
splitting functional link adaptive filters for NAEC, thus resulting an effective
alternative to adaptive Volterra filters. The nonlinear model of SFLAFs has a
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great worthiness in this research project since it opens new research scenarios
in the nonlinear acoustic echo cancellation due to the fact that SFLAFs allow
future developments. In fact, using proper adaptive algorithms and nonlinear
expansion it is possible to achieve further improvements in terms of ERLE.
Moreover, it is possible to apply the proportionate techniques, introduced
in the chapters of Part II, thus achieving a better modelling of nonlinearities,
especially when they are highly time-variant.
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PART IV

ROBUST ADAPTIVE FILTERING
ARCHITECTURES

—Wherever we are, what we hear is mostly noise.
When we ignore it, it disturbs us.

When we listen to it, we find it fascinating.
John Cage
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10
FILTERING ARCHITECTURES BASED ON ADAPTIVE

COMBINATION OF FILTERS
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IN the previous two parts of this work we have seen interesting adaptive
algorithms for linear and nonlinear modelling of the acoustic impulse
response. Even if such algorithms have shown remarkable results not

always they provide optimal performance. In fact, they might suffer the
initial choice of parameter settings when conditions of the environment, or
in general of a system to identify, change during the adaptation, such that
the initial setting becomes unsatisfying. In the linear case, such a situation
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may occur due to a nonstationary or a change in the environment which
leads to a different choice of the step size parameter rather than the filter
length or the regularization factor. Similarly, in the nonlinear case, a kind of
nonlinearity highly varying, in amplitude or in time, may require to change
the filter design during the adaptation. Moreover, another important troubling
situation occurs when the desired signal is not known a priori, thus it is difficult
to choose whether adopting a linear filter or a nonlinear model.

In order to tackle these problems we introduce robust adaptive filtering
architectures based on the adaptive combination of filters. The idea of filters
combination is very interesting because it is possible to model a wide range of
applications [81, 67]. Using such technique it is possible to develop combined fil-
tering architectures able to change their parameter setting automatically during
the adaptation. An experimental example of combined filtering architectures
for acoustic application can be found in Chapter 11.

Moreover, the adaptive combination of filters may be used also to develop
collaborative filtering architectures able to model an impulse response apart from
its nature, whether it is linear or nonlinear. This results very useful in acoustic
applications, such as AEC, when it is not possible to know a priori if the AIR
conveys any nonlinearity, thus biasing the design choices about an acoustic
echo canceller. An experimental example of collaborative filtering architecture
for AEC can be found in Chapter 12.

However, first of all in this chapter it is necessary to introduce the adaptive
combination of filters.

10.1 ADAPTIVE COMBINATION OF FILTERS

Real-world processes comprise both linear and nonlinear components, to-
gether with deterministic (that can be precisely described by a set of equations)
and stochastic ones. In this way, models used to describe these real-world
processes can be classified with a certain degree of nonlinearity and uncer-
tainty, and described in a diagram (see Fig. 10.1). In literature only few cases
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Fig. 10.1: Possible variety of signals spanned by a certain degree of nonlinearity and uncer-
tainty.

as the linear stochastic ARMA and chaotic models are well understood, while
real-world processes are often a combination of the previous four possibilities.
In order to automatically take into account all the previous possibilities, a
possible solution is to think to a system that automatically selects the right
subsystem working on the relative quadrant.

It is possible to generalize Fig. 10.1 to the adaptive filtering, such that each
subsystem corresponds to an adaptive filter. Using the fusion of the outputs
of adaptive filters it is possible to produce a single hybrid filtering architecture
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Fig. 10.2: Adaptive combination of transversal adaptive filters.

which provides at each time-instant the best performance among those of
individual adaptive filters [67].

Adaptive combination of filters, as depicted in Fig. 10.2, consists of multi-
ple individual adaptive subfilters operating in parallel and all feeding into a
mixing algorithm which produces the single output of the filter [5, 73]:

y [n] =

N∑
i=1

λi [n] yi [n]

=
N∑
i=1

λix
T
i,nwi,n−1

(10.1)
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where N is the number of filters in parallel, yi [n], are the outputs of the
individual filters, with i = 1, . . . , N , and λi [n] are the mixing parameters,
which are nothing but the coefficients of the filter on the output stage. Such
mixing parameters can be updated using an adaptive algorithm. Therefore,
the mixing coefficients are also adaptive and combine the outputs of each
subfilter based on the estimate of their current performance on the input signal
from their instantaneous output error. The mixing parameters are updated
in such a way to minimize the global MSE in output. This minimization may
be subjected to a constraint. The most used optimization constraints in the
adaptive combination of filters are the affine and the convex constraints.

The affine combination of adaptive filter is characterized by an affine constraint,
according to which:

N∑
i=1

λi [n] = 1. (10.2)

On the other side, the convex combination of filters, in addition to satisfy the
affine constraint, is characterized by the fact that all the mixing parameters
are not negative, i.e.:

N∑
i=1

λi [n] = 1 with 0 ≤ λi [n] ≤ 1, i = 1, . . . , N (10.3)

In the next section we deepen the convex combination which is quite used in
acoustic applications.

10.2 CONVEX COMBINATION OF ADAPTIVE
FILTERS

A simple form of mixing algorithm for two adaptive filters is a convex
combination. Convexity can be described as [26]:
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1y  1 21y y   2y

Fig. 10.3: Convexity.

λy1 + (1− λ) y2 (10.4)

where λ ∈ [0, 1]. For y1 and y2 being two points on a line, as shown in Fig.
10.3, their convex mixture (10.4) will lie on the same line between y1 and y2.

The convex combination between two adaptive filters is represented in Fig.
10.4, in which, due to the convex constraint, the mixing parameters can be
written as λ1 = λ and λ2 = 1− λ.

Therefore, in this case the output of the combined structure can be written
as:

y [n] = λy1 [n] + (1− λ) y2 [n] (10.5)

It has been showed, in [5, 6], that the convex combination method is universal
with respect to the component filters, i.e., in steady-state, it performs at least as
well as the best component filter. Furthermore, when the correlation between
the a priori errors of the components is low enough, their combination is able
to outperform both of them [6]. This is the reason why the convex combi-
nation of filters is very attractive in adaptive filtering. In fact, it is known
that on-line adaptation of certain filter parameters or even cost functions has
been attempted to influence filter performance, such as adjusting the forget-
ting factor of recursive least squares (RLS) algorithms [164] or minimizing
adjustable cost functions [25, 105]. However, a widespread use of adaptive
combination of filters is to optimally set the step size parameter. Variable step
size adaptive filters (see also Section 5.5) allow the filters to dynamically adjust
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Fig. 10.4: Convex combination of two adaptive filters.

their performance in response to conditions in the input data and error signals
[58, 75, 124]. For example, it is possible to choose a convex combination of two
adaptive filters [84, 8], one fast, i.e. with a large step size value, and one slow,
i.e. with a small step size value. These filters are combined in such a manner
that the advantages of both component filters are kept: the rapid convergence
from the fast filter, and the reduced steady-state error from the slow filter. This
scheme, that has also proven to outperform previous variable step approaches,
is an analogy of a well-known neurological fact: human brains combine fast
and coarse reactions against abrupt changes in the environment, with an early
processing at the amygdala, and more elaborated but slower responses taken
in the neocortex at a conscious level [7].
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10.3 ADAPTATION OF MIXING PARAMETERS

The adaptation of the mixing parameters follows the updating rule of
stochastic gradient adaptive algorithms (see Section 4.4). As it is possible to
see also from Fig. 10.2 and Fig. 10.4, the individual filters are independently
adapted using their own error signals, while the combination, both affine and
convex, is adapted by means of a stochastic gradient algorithm in order to
minimize the error of the overall structure. In this section we introduce the
LMS and the NLMS adaptation for the mixing parameters, however other
stochastic gradient algorithms might be adopted.

10.3.1 LMS adaptation of a convex combination of two filters

Let us consider the convex combination of two adaptive filters, as depicted
in Fig. 10.4, described by equation (10.5). Let M the length of both the adaptive
filter and let the input signal buffer xn ∈ RM . The least mean square updating
equations for the two filters result:

wi,n = wi,n−1 + µix
T
nei [n] , with i = 1, 2 (10.6)

where:

ei [n] = d [n]− yi [n] (10.7)

is the instantaneous error relative to individual filters.

Concerning the mixing parameter λ [n], the adaptation may be carried
out in convex mode imposing that 0 ≤ λ [n] ≤ 1 by means of a sigmoidal
activation function defined as:

λ [n] = sgm (a [n])

=
1

1 + e−a[n]

(10.8)
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i.e., such that λ [n] derive from the adaptation of an auxiliary parameter, a [n],
which is updated by means of a gradient descent rule, such as a [n+ 1] =

a [n] + ∆a [n]. Therefore, ∆a [n] may be computed applying a least mean square
adaptation rule:

∆a [n] = −1

2
µa

∂e2 [n]

∂a [n]

= −µae [n]
∂ (d [n]− λ [n] y1 [n]− (1− λ [n]) y2 [n])

∂λ [n]

∂λ [n]

∂a [n]

= µae [n] (y1 [n]− y2 [n])λ [n] (1− λ [n]) .

(10.9)

where µa is a step size parameter.

The benefits of employing the sigmoidal activation function are twofold.
First, it serves to keep λ [n] within the desired range [0, 1]. Second, as seen from
(10.9), the adaptation rule of a [n] reduces both the stochastic gradient noise
and the adaptation speed near λ [n] = 1 and λ [n] = 0 when the combination is
expected to perform close to one of its component filters without degradation.
Still, note that the update of a [n] in (10.9) stops whenever λ [n] is too close to
the limit values of 0 or 1. To circumvent this problem, we shall restrict the
values of a [n] to lie inside a symmetric interval [−a+, a+], which limits the
permissible range of λ [n] to [1− λ+, λ+], where λ+ = sgm (a+) is a constant
close to 1. In this way, a minimum level of adaption is always guaranteed.

10.3.2 A normalized adaptation

In [9] a normalized adaptation scheme has been introduced in order to be
more robust to changes in the filtering scenario. Considering equation (10.7),
it is possible to rewrite (10.5) as:

y [n] = y2 [n] + λ [n] (e2 [n]− e1 [n]) (10.10)

so that we can think of the overall combination scheme as a two-stage adaptive
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filter. In the first stage, the two component filters operate independently of
each other and according to their own rules, while the second layer consists of
a filter with input signal e2 [n]− e1 [n] that minimizes the overall error.

This interpretation of the combination scheme suggests that further advan-
tages could be obtained if we used a normalized LMS rule for adapting the
mixing parameter rather than standard LMS. Since e2 [n]− e1 [n] plays the role
of the input signal at this level, it makes sense to use the following adaptation
scheme:

a [n+ 1] = a [n] + µa
λ [n] (1− λ [n])

(e2 [n]− e1 [n])
2 e [n] (e2 [n]− e1 [n]) . (10.11)

In practice, however, the performance of this scheme is quite unsatisfactory
given that the instantaneous value (e2 [n]− e1 [n])

2 is a very poor estimate
of the power of the “second stage” input signal. Similar to the normalized
LMS (NLMS) algorithm with power normalization [120], better behaviour is
obtained from:

a [n+ 1] = a [n] +
µa

r [n]
λ [n] (1− λ [n]) e [n] (e2 [n]− e1 [n]) (10.12)

where:

r [n] = βr [n− 1] + (1− β) (e2 [n]− e1 [n])
2 (10.13)

is a rough (low-pass filtered) estimate of the power of the signal of interest.
Selection of the forgetting factor β is rather easy. For instance, using β = 0.9

gives a good enough approximation, and typically ensures that r [n] is adapted
faster than any component filter.
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10.4 CONCLUSIONS

In this chapter adaptive combination of filters has been introduced. In the
following two chapters we use this technique to develop robust combined
filtering architectures, for the linear modelling, and collaborative filtering
architectures, for the nonlinear modelling. Adaptive combination of filters still
remains a fertile argument for future researches since, as we have seen, the
adaptation of mixing parameters is conducted by means of stochastic adaptive
algorithms; it can be thinkable to adopt more appropriate adaptation rules,
especially for the modelling of an acoustic path.
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11.1. Introduction

ADAPTIVE combination of filters is a very effective and flexible ap-
proach to balance the compromises inherent to the settings of adap-
tive filters. In this chapter we exploits the capabilities of adaptive

combination of filters in order to introduces novel adaptive beamforming
methods for speech enhancement applications, designed to be robust against
adverse environment conditions. The proposed architectures derive from
the generalized sidelobe canceller (GSC); the novelty relies on the use of hybrid
adaptive sidelobe cancelling structures which allow the system to achieve
robustness in nonstationary environments. The novel structures are based on
the convex combination of two multiple-input single-output (MISO) adaptive
systems with complementary capabilities. The whole beamformer benefits
from the combination and results to be able to preserve the best properties of
each system. Experiments show that the proposed beamforming systems are
capable of enhancing the desired speech signal even in adverse environment
conditions1.

11.1 INTRODUCTION

In immersive speech communications, taking place in multisource envi-
ronments, the presence of interfering signals and reverberation may cause
the loss of spatial information, thus resulting in compromising the speech
intelligibility. In order to tackle this problem, speech enhancement systems
are widely employed in distant talking applications. Microphone array beam-
forming represents a class of such speech enhancement techniques which
are highly effective in acquiring a desired source signal while reducing the
interfering components, thus resulting in recovering the binaural perception.
Beamforming systems exploit the properties of microphone interfaces which
facilitate binaural hearing.

The generalized sidelobe canceller (GSC) [54] is one of the most popular beam-

1The work in this chapter has been performed while the author was a Ph.D. student
collaborating with the Fondazione Ugo Bordoni.
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forming techniques for speech enhancement. The potency of a GSC system
strictly relies on the adaptive algorithm chosen to perform the sidelobe can-
celler in the adaptive path. Generally the adaptation of filters in time-domain
may be performed by gradient-based adaptive algorithms (see Section 4.4),
such as the LMS-type algorithms. Although this family of algorithms is com-
putationally quite cheaper, when the filter length is quite large a rather slow
convergence occurs [120], thus the adaptation of the filter weights becomes
unpractical in hands-free applications. Another time-domain standard ap-
proach is Hessian-based adaptive filtering, which is typical of algorithms such
as the RLS. The latter approach displays a faster convergence rate compared
with gradient-based algorithms [120]. However, RLS adaptive filtering en-
tails a high computational complexity; therefore, adaptation may become
prohibitively expensive, thus compromising real-time implementations. More-
over, the RLS may perform worse than LMS algorithm in nonstationary envi-
ronment, depending on the statistics of acquired source signals [41]. A good
compromise between performance and computational load may be obtained
by using the family of APA [98], which is quite used in adaptive beamforming
[163, 30], since it shows better convergence rates and manageable computa-
tional complexity compared with other time-domain algorithms. Moreover,
APA is the best suitable algorithm to process speech signals compared with
other classic time-domain adaptive algorithms. However, despite its good
capabilities, APA suffers adverse environment conditions, especially in pres-
ence of multiple nonstationary sources which make the adaptation process
unstable and reduce speech enhancement performance.

In order to address this problem we propose robust microphone beam-
forming architectures based on the adaptive combination of MISO systems,
that are nothing but filter banks. Combined adaptive schemes are usually
adopted with filters of the same family and complementary properties, e.g.
using different step sizes, different filter lengths; however, they are used even
with filters of different families using different updating rules or different
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cost functions [82, 160, 17, 126, 74]. A combined architecture is capable of
adaptively switching between filters according to the best performing filter,
thus always providing the best possible filtering (see Chapter 10).

In this chapter we propose two different beamforming architectures based
on the combination of MISO systems using different updating approaches. In
particular, we propose a system-by-system combined architecture, in which the
overall output of the first MISO system is convexly combined with the overall
output of the second MISO system, and a filter-by-filter combined architecture,
in which each adaptive filter of the first MISO system is convexly combined
with the correspondent filter of the second MISO system. Moreover, in order to
use the best parameter setting for each filter and further improve the tracking
performance we use both the combination of filters with different updating
approaches and the combination of filters with different step size values in a
multi-stage combined architecture in which the filtering process is carried out
in two steps [73].
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Fig. 11.1: Microphone array beamforming architecture.
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11.2 COMBINED MICROPHONE ARRAY BEAMFOR-
MING ARCHITECTURE

The beamforming architecture adopted in this paper is a typical GSC configu-
ration [54] composed of a microphone array interface, a fixed delay-and-sum
beamformer (DSB), and an adaptive noise cancelling (ANC) path, as depicted in
Fig. 11.1. Let us consider a microphone array interface composed of N sensors.
The signal ui [n] acquired by the i-th microphone, with i = 0, . . . , N − 1, is a
delayed replica of the target signal s [n] convolved with the (AIR) ai between
the i-th microphone and the desired source with the addition of background
noise vi [n]. The DSB spatially aligns the microphone signals with reference to
the desired source direction, yielding the speech reference signal d [n]:

d [n] =

N−1∑
i=0

ui [n]

=
N−1∑
i=0

M−1∑
m=0

ai [m] s [n−m− τi] + vi [n]

(11.1)

where we suppose that each AIR between the desired source and the i-th
microphone has the same length denoted with M . τi represents the delay
relative to the i-th microphone.

In the adaptive path of the beamformer, the blocking matrix (BM) generates
the noise references xp [n], with p = 0, . . . , P − 1, being P = N − 1. The BM
is implemented by pairwise differences between microphone signals [20], i.e.
the sum of the elements of each column, except the first one, is null.

The noise reference signals are then processed by means of the combined
adaptive noise canceller (CANC), whose structure will be detailed in the next
section. The goal of the CANC is to remove any residual noise components in
the speech reference signal, minimizing the output power and yielding the
beamformer output signal e [n].
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11.3 ADAPTIVE COMBINATION OF MISO
SYSTEMS

11.3.1 Convex combination of adaptive filters using APA

The trademark of the proposed beamforming approach is represented
by the structure of the CANC. Generally, a conventional ANC is composed
of an adaptive filter bank forming an MISO system. However, the adopted
architecture results from combinations of adaptive filters. In particular, the
structure is composed of two or more different MISO systems, each bringing
different filtering capabilities to the whole beamformer. Each MISO system
receives the same input signals, which are the noise reference signals resulting
from the BM. Taking into account a number J of MISO systems, the p-th
filter of the j-th MISO system, with j = 0, . . . , J − 1, receives as input a noise
reference matrix X

(j)
n,p, defined similarly to (5.2), but using a projection order

Kj relative to all the filters of the j-th MISO system. We denote the coefficient
vector of the p-th filter belonging to the j-th MISO system at n-th time instant
as w

(j)
n,p ∈ RM , which contains the same number of coefficients, M , and is

adapted according to the affine projection algorithm (APA) [98], whose updating
rule is derived similarly to (4.42):

w(j)
n,p = w

(j)
n−1,p + µjX

(j),T
n,p

(
δjI+X(j)

n,pX
(j),T
n,p

)−1
e(j)n (11.2)

where e
(j)
n ∈ RKj is the error vector of the j-th MISO system containing the

last Kj samples of the j-th error signal, which results from:

e(j)n = d(j)
n −

P−1∑
p=0

y(j)
n,p (11.3)

where d
(j)
n ∈ RKj is the vector containing the last Kj samples of the desired

signal and y
(j)
n,p ∈ RKj = X

(j)
n,pw

(j)
n−1,p is the vector containing the Kj projections

of the output signal relative to the p-th filter of the j-th MISO system. Moreover,
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in equation (11.2), the parameters µj and δj are respectively the step size and
the regularization factor common for all the filters of the j-th MISO system.

Using the updating rule described by (11.2) it is possible to differentiate
the considered MISO systems simply changing the values of the step sizes
or of the projection orders. However, aside from the chosen distinguishing
parameters, there are two ways to combine the MISO system. The first way is
to convexly combine the outputs of the two MISO systems and the second is
to combine each filter of the first MISO system with the correspondent filter of
the second MISO system under a convex constraint. We denote the former way
as system-by-system combined architecture and the latter as filter-by-filter combined
architecture, which are both described in the following two subsections.

11.3.2 System-by-system combined architecture

The first proposed scheme is the system-by-system CANC, depicted in
Fig. 11.2 (a). The output of each MISO system, that we denote as y(j) [n] =∑P−1

p=0 y
(j)
p [n], yields two system outputs that are then convexly combined

generating the overall CANC output:

z [n] = λ [n] y(0) [n] + (1− λ [n]) y(1) [n] (11.4)

where λ [n] is the mixing parameter (see Chapter 10). Therefore, the beamformer
output signal e [n], using the system-by-system combination, is achieved as
e [n] = d [n]− z [n].

The mixing parameter in (11.4) is usually updated using a gradient descent
rule through the adaptation of an auxiliary parameter, a [n], related to λ [n] by
a sigmoidal activation function, similarly to (10.12).

11.3.3 Filter-by-filter combined architecture

The second proposed scheme is the filter-by-filter CANC in which the
output signal z [n] is built in a different way. As it is possible to see in Fig.
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Fig. 11.2: Combined adaptive noise canceller architectures: (a) system-by-system and (b)
filter-by-filter combination schemes.

11.2 (b), the p-th filter output of the first MISO system is convexly combined
with the correspondent p-th filter output of the second MISO system, thus
generating P − 1 outputs, each relative to a noise reference:

yp [n] = λp [n] y
(0)
p [n] + (1− λp [n]) y

(1)
p [n] (11.5)

where λp [n] is the p-th mixing parameter, adapted using the p-th auxiliary pa-
rameter, ap [n], similarly to (10.12). Once computing the convex combinations,
it is possible to achieve the CANC output signal z [n] by summing the individ-
ual output contributions deriving from the combinations, as it is possible to
see in Fig. 11.2 (b):

z [n] =

P−1∑
p=0

yp [n] (11.6)

from which we derive the overall beamformer output signal e [n] = d [n]−z [n],
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relative to the filter-by-filter combination scheme.

Both the combined architectures presented above improve the tracking
capabilities of CANC giving robustness to the overall beamforming system in
nonstationary environments.

11.4 MULTI-STAGE MICROPHONE ARRAY
BEAMFORMING

The microphone beamforming schemes described in Section 11.3 are effec-
tive in presence of multiple nonstationary sources both choosing different step
size values (µ0 small and µ1 large) and different projection orders (K0 = 1 and
K1 > 1). However, further improvements may be achieved if we consider the
joined capabilities deriving from choosing both different step size values and
projection orders. To this end we propose a multi-stage combined architecture in
which the filtering process may involve more convex combinations of MISO
systems.

In particular, in order to yield an adaptive beamforming architecture ro-
bust against adverse conditions, we may consider a CANC composed of a
number J = 4 of MISO systems, as depicted in Fig. 11.3, each bringing dif-
ferent capabilities to the whole architecture. We differentiate by twos the
four systems according to the step size values and the projection orders. In
particular, we choose a small step size µj = µA for j = 0, 2 and a large step
size value µj = µB for j = 1, 3. Moreover, we update the first two MISO
systems using a gradient-based algorithm and the second two systems with
a Hessian-based algorithm. This is obtained by setting a unitary projection
order Kj = 1 for j = 0, 1 and a superior projection order Kj > 1 for j = 2, 3.

The choice of different step size values affects the convex combinations on
the first stage, in which the first MISO system is combined with the second
and the third with the four. In this stage the convex combination may follow
the system-by-system scheme or the filter-by-filter scheme. In Fig. 11.3 a multi-
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Fig. 11.3: Multi-stage combined adaptive noise canceller.
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stage beamformer with a filter-by-filter scheme on the first stage is depicted.
On the other hand, the choice of different projection order affects the convex
combination on the second stage, in which the output signal resulting from
the combination of the first and the second MISO systems is in turn combined
with the output signal resulting from the combination of the third and the
four MISO systems. The convex combination on the second stage follows the
system-by-system combination scheme.

Output signals of the convex combinations on the first stage, denoted
as z(A) [n] and z(B) [n], may be achieved similarly to (11.4), according to a
system-by-system combination scheme, or similarly to (11.6), according to
a filter-by-filter combination scheme as depicted in Fig. 11.3. In turn, the
convex combination on the second stage may be achieved according to a
system-by-system scheme, thus resulting the following output signal from the
multi-stage CANC:

z [n] = η [n] z(A) [n] + (1− η [n]) z(B) [n] (11.7)

where η [n] is the mixing parameter of the second stage, even adapted using
an auxiliary parameter.

Once computing the second stage convex combination, it is possible to
derive the overall multi-stage beamformer output signal e [n] = d [n]− z [n],
as done for the single-stage combination schemes in Section 11.3.

The multi-stage beamforming architecture introduced above exploits the
capabilities of each MISO system, thus improving speech enhancement per-
formance compared to both conventional beamformers (using a single MISO
ANC) and single-stage combined beamformers in presence of nonstationary
interfering signals.
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11.5 EXPERIMENTAL RESULTS

In the this section we carry out two different sets of experiments: the first
set, in Subsection 11.5.1, aims at assessing the effectiveness of the described
combined filtering schemes adopted in the proposed beamforming method;
the second set of experiments, detailed in Subsection 11.5.2, is performed
to evaluate the proposed combined beamforming architectures for speech
enhancement application in a multisource scenario.

11.5.1 Convergence performance of combined architectures

In the first set of experiments we prove the filtering effectiveness of pro-
posed CANC schemes through a tracking analysis which describes the conver-
gence performance. To this end we use conventional ANC MISO systems and
the proposed combined architectures to identify an unknown nonstationary
system and to compare their performance.

The initial optimal solution is formed with M = 7 independent random val-
ues between −1 and 1. In the following examples the initial system is: wopt

1 =[
0.4125 0.7632 −0.5484 −0.6099 −0.4622 −0.4826 −0.5296

]T
. The

input signal is generated by means of a first-order autoregressive model,
whose transfer function is

√
1− α2/

(
1− αz−1

)
, with α = 0.8, fed with an i.i.d.

Gaussian random process. The length of the input signal is of L = 10000 sam-
ples. However, in order to study the ability of combined schemes to react to
nonstationary environments, at time instant n = L/2 the system changes into

wopt
2 =

[
−0.4223 0.0848 −0.1228 0.3876 0.9950 0.9806 −0.2700

]T
.

Furthermore, an additive i.i.d. noise signal e0 [n] with variance σ2
0 = 0.01

is added to form the desired signal.

In order to identify the unknown solutions wopt
1 and wopt

2 we use both
conventional MISO systems and the adaptive combined filtering schemes
described in Sections 11.3 and 11.4 and we compare their performance in terms
of excess mean square error (EMSE), defined as EMSE [n] = E

{
(e [n]− e0 [n])

2
}

,
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where e [n] is the error signal of the filtering architecture, e0 [n] is the additive
noise signal (which is the same for all the filtering architectures) and the
operator E {·} is the mathematical expectation. The EMSE of each filtering
structure is evaluated over 1000 independent runs. Moreover, in order to
facilitate the visualization, the EMSE curves are filtered by a moving-average
filter. All the filtering architectures, included the conventional ones, use MISO
systems with P = 4 channels.

In a first experiment, we compare a conventional MISO architecture and
both single-stage combined architectures described in Section 11.3, i.e. the
system-by-system CANC and the filter-by-filter CANC. Both the system-by-
system and the filter-by-filter schemes are composed of two MISO systems, as
depicted in Fig. 11.2. All the MISO systems use APA filters. For the adaptation
of the mixing parameter of the system-by-system filtering architecture we use
a step size value of µs = 102, while a step size value of µf = 103 is adopted for
the adaptation of all the mixing parameters of the filter-by-filter scheme. Both
the step size values provide the best performance in each case. We evaluate
the filtering architectures choosing the same projection order K = 2 for all
the MISO systems and different step size values for the MISO systems of the
combined schemes: a slower one µ0 = 0.01 and a faster one µ1 = 0.1. In
Fig. 11.4 we have compared the performance of combined architecture with
those of conventional ANC using both µ0 and µ1. As it is possible to see, both
system-by-system and filter-by-filter schemes take advantage from using the
combined filtering with respect to conventional filtering. In fact, combined
schemes always show the behaviour of the best performing system and in
transient state they behave even better than the best conventional filtering.
Both the combined schemes provide good convergence performance, however
the filter-by-filter scheme is slightly better than the system-by-system one due
to the fact that the adaptation of the mixing parameters in the filter-by-filter
scheme is faster than the system-by-system one, as can be seen in Fig. 11.5.
This results in a quality improvement of the processed signal that can be
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Fig. 11.6: EMSE comparison between multi-stage combined filtering architectures and
conventional ones.

decisive in speech applications. A similar result was achieved choosing the
same step size value and different projection orders.

In a second experiment, keeping the same scenario, we study now the
convergence performance of the multi-stage combined architecture. As stated
in Section 11.4, in a multi-stage combined scheme the combinations on the
first stage may be performed in both system-by-system or filter-by-filter way.
However, in light of previous result we take into account the performance of
a multi-stage scheme whose combinations on the first stage are performed
according to a filter-by-filter scheme, as depicted in Fig. 11.3. Therefore, we
consider a two-stage combined scheme composed of four different MISO
systems and we choose two different step size values, µ0 = 0 .01 and µ1 = 0 .1,
and two different projection orders K 0 = 1 and K 1 = 4 . In Fig. 11.6 the
comparison between the multi-stage combined filtering architecture and the

171



11.5. Experimental results

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000−20

−19

−18

−17

−16

−15

−14

−13

−12

−11

−10

samples

EM
SE

Filter−by−filter CANC, 0, K0, K1
Filter−by−filter CANC, 1, K0, K1
Filter−by−filter CANC, 0, 1, K0
Filter−by−filter CANC, 0, 0, K1

Multi−stage Combined CANC

Fig. 11.7: EMSE comparison between multi-stage combined filtering architectures and single-
stage ones. Multi-stage combined architecture always provide the best overall performance.

individual conventional filterings shows that the multi-stage filtering results
the best performing architecture. Moreover, the performance improvement
of the multi-stage architecture results even from the comparison with the
single-stage filter-by-filter architectures, as depicted in Fig. 11.7.

Results achieved in this subsection the filtering ability of proposed com-
bined schemes compared to conventional filtering. Moreover, a slightly pref-
erence is given to the filter-by-filter schemes which show a better reaction to
abrupt changes in the environment due to the fact that the adaptive combina-
tion is performed for each channel. Furthermore, filter-by-filter schemes may
exploit spatial diversity and thus different step size values for the adaptation
of the mixing parameters may be chosen according to the scenario require-
ments. Finally, it has been shown that the multi-stage combined filtering
always achieves the best convergence performance.
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11.5.2 Speech enhancement evaluation of combined beamformers

In the second set of experiments we assess the effectiveness of the proposed
combined beamforming architectures in terms of speech enhancement in
multisource nonstationary environments. Experiments take place in a 6× 5×
3, 3 m room with a reverberation time of T60 ≈ 120 ms. The source of interest
is a female speaker located 70 cm from the center of the microphone array, as
depicted in Fig. 11.8. Two interfering sources are initially located respectively
1, 9 m and 2, 8 m about from the center of the acoustic interface: the first source
is a female speaker located on the left of the array, while on the right is located
the second source which is a male speaker. White Gaussian noise is added at

6,00 m

5,
00

 m
 

Microphone Array

0,7 m

Desired Source

Interfering Source #1
Position #1 Interfering Source #2

Position #1

Interfering Source #1
Position #2

Interfering Source #2
Position #2

Fig. 11.8: Speech enhancement nonstationary scenario. The source of interest is a female
speaker located in front of the microphone array and two interfering speakers are located
respectively on the left and on the right of the desired source. After 5 seconds from the start of
the experiment the first interfering source moves to position 2 and at second 10 also the second
interfering source changes its position.
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microphone signals as diffuse background noise, thus providing 20 dB of SNR
(signal-to-noise ratio) with respect to the desired source. The overall input SNR
level, measured for each microphone signal, is of about 3 dB. After 5 seconds
from the start of the experiment the first source changes its position and at
second 10 also the second source changes its position. The overall length of
the experiment is of 15 seconds.

The AIRs between sources and microphones are simulated by means of
Roomsim, which is a Matlab tool [24]. Each AIR is measured by using an 8 kHz
sampling rate and it is truncated after M = 340 samples, which is also the
length of each filter. The microphone interface is a classic uniform linear array
(ULA) composed of 8 omnidirectional sensors equally spaced with a distance
of 5 cm, thus having a good spatial resolution even at mid-low frequencies.

The enhancement of the speech, provided by the beamformer, and the
resulting noise reduction, are usually associated with an SNR improvement,
defined as [20]:

SNR = 10 log

[
E
{
s2in [n]

}

E
{
s2in [n]

}
− E

{
s2out [n]

}
]

(11.8)

where sin [n] is the generic input clean signal and sout [n] is the processed signal.
We compute the SNR level over the total length of the experiment (0 − 15

seconds) and also in 3 different sub-intervals of time: the initial state, from 0−5

seconds, when the two interfering sources are located in their initial position;
the first change, from 5−10 seconds, which includes the position change of the
first interfering source and the consequent readaptation of the filtering system;
the second change, from 10 − 15 seconds, when also the second interfering
source changes its position. We compare GSC beamformers having different
ANCs: conventional ANCs with with different parameter settings, the single-
stage filter-by-filter combined ANC with different parameter settings, and
the two-stage combined ANC. Filter parameters µ0, µ1, K0, K1, µs and µf

are the same used in the first set of experiments. Results are collected in
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GSC 0-5 s 5-10 s 10-15 s 0-15 s

Conventional ANC, µ0, K0 17.2 14.2 14.9 15.6

Conventional ANC, µ0, K1 17.8 16.7 16.8 16.9

Conventional ANC, µ1, K0 18.1 16.3 16.5 16.8

Conventional ANC, µ1, K1 13.4 13.2 13.4 13.4

FF CANC, µ0, K0, K1 18.4 17.0 18.1 18.0

FF CANC, µ1, K0, K1 18.2 17.5 18.0 17.9

MFF CANC, µ0, K0, K1 18.8 18.1 19.1 18.7

Table 11.1: SNR comparison in dB. We evaluate the beamformers over three sub-intervals of
time, 0-5, 5-10 and 10-15 seconds, and over the total length of the experiment, 0-15 seconds.
Multi-stage combined beamformer always performs the best reduction of interfering signals.

Table 11.1, in which it is possible to notice the behaviour of the different
beamformers taken into account and their contribution to the noise reduction
in terms of SNR improvement. We could have shown performance of both
system-by-system and filter-by-filter combination schemes and both varying
the step size values and the projection order. However, for a better ease
of reading results, we only show the performance relative to filter-by-filter
combination schemes, which achieve the more relevant results, and we only
vary the step size value for the single-stage combined ANCs. From Table
11.1 can infer that all the conventional ANCs show difficulties when a source
change its position, thus decreasing speech enhancement performance. The
more stable conventional ANC is the one having a large step size value and
a large projection order, however, its performance is the poorest in terms of
SNR. A significant enhancement is achieved by means of the filter-by-filter
combined ANC (FF CANC) and a further improvement is provided by the
multi-stage filter-by-filter combined ANC (MFFC ANC) which achieves the
best performance in each time interval in terms of SNR.

SNR values obtained from this experiment are not definitely the best
achievable values, since better results may be obtained using more sophisti-
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cated GSC beamformers, i.e. involving any voice activity detectors (VADs) and
post-filters. However, the obtained results are sufficient to show the effec-
tiveness of the proposed combined beamformers compared to conventional
methods. Further results can be found in [28].

11.6 CONCLUSIONS

In this chapter we have introduced novel beamforming methods whose
goal is to improve the performance, in terms of speech enhancement, in
presence of a multisource nonstationary environment . The trademark of
proposed methods relies on the use of combined filtering schemes in the ANC
block. These combined schemes are based on the adaptive combination of
MISO systems with different parameter settings thus involving complemen-
tary capabilities. The whole beamforming system benefits from the different
capabilities of each MISO systems, yielding improved performance. We in-
troduced two different way of combining the MISO systems which are the
system-by-system scheme and the filter-by-filter one. Both the combined archi-
tectures provides better performance compared to conventional beamformers,
however filter-by-filter schemes are slightly preferable due to the fact that
the adaptive combination is performed for each channel. This allows filter-
by-filter beamformers to better react to abrupt changes in the environment
and to exploit spatial diversity by choosing different step size values for the
adaptation of the mixing parameter of each channel. Finally, a multi-stage com-
bined beamformer has been introduced in which the adaptive combination of
MISO systems can be performed in subsequent stages. In particular, we have
taken into account a two-stage combined beamformer which outperforms
the single-stage schemes, thus always providing the best performance when
nonstationary sources interfere with the enhancement of a desired speech
signal.
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ADAPTIVE combination of filters may result very useful in setting the
critical parameters of a filter during the adaptation, as shown in
the previous chapter. However, the adaptive combination might

result non-optimal when the goal is to exploit the capabilities of different
models, or adaptive filters having different modelling tasks. In fact, in such
situations in order to reach a desired performance the contribution of each
filter might be necessary to reach a goal. This is the reason why affine and
convex constraints might be not appropriate, since the sum of the mixing
coefficients could be larger than one. In this chapter we use the adaptive
combination of filters in a different way, in order to develop not combined
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but collaborative filtering architectures through the introduction of a virtual
filter. We apply such collaborative architectures for the nonlinear acoustic echo
cancellation. Experimental results show that proposed architectures show a
more robust behaviour compared with other nonlinear echo cancellers aside
from the nonlinearity level in the echo path1.

12.1 A SERIUOS PROBLEM IN NAEC

In immersive speech communications, the necessity of using NAECs is
increasingly pressing due to the growing spread of low-cost loudspeakers for
commercial hands-free communication systems, that cause significant nonlin-
earities in the echo path and lead to communication quality degradation [18],
[147]. However, when the echo path is roughly linear or contains negligible
nonlinearities an NAEC could perform worse than a conventional AEC due
to the gradient noise introduced by the nonlinear filter. Moreover, the ratio
between linear and nonlinear echo signal power is unknown a priori and it is
time-varying for nonstationary signals like speech. Thereby, it is not possible
a priori to know if an NAEC will improve or deteriorate the cancellation. This
trouble, along with the expensive computational cost of a NAEC, affects the
strategies of many companies that provide teleconferencing services, which
often choose to drop the use of nonlinear echo cancellers even at the expense
of communication quality.

A possible solution to this problem is the use of collaborative filtering
architectures. Collaborative filtering architectures are based on the convex
combination of an adaptive filter with an all-zero kernel (AZK), i.e. a virtual
kernel whose coefficients are set to zero and do not need adaptation [10].
Such convex combination is depicted in Fig. 12.1, where it is possible to see
that, while the adaptive filter is updated according to its own error signal

1The work in this chapter has been partly performed while the author was a visiting Ph.D.
student at the Department of “Teoría de la Señal y Comunicaciones”, at “Universidad Carlos
III de Madrid”.
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Fig. 12.1: Intelligent switching circuit. The structure is composed of a convex combination
between an adaptive filter and an all-zero kernel.

e1 [n], the AZK is not adapted since it is a vector with null coefficients. As a
consequence, the output signal of the AZK y2 [n] is a null contribution. This
scheme is nothing but an intelligent switch circuit. In fact, according to the cost
function chosen for the adaptation of the mixing parameter λ [n], the circuit
can automatically activate or deactivate the adaptive filter. Such switching
is performed by the convex combination: according to equation (10.5), when
the mixing parameter λ [n] is close to 1 the circuit output y [n] will bear the
adaptive filter contribution y1 [n], while when λ [n] → 0 the circuit selects the
AZK output, thus resulting in a null output signal for the overall circuit.

Adaptive schemes using such intelligent switching circuit are introduced
in [10] for NAEC employing Volterra filters and kernels, which are frequently
employed as nonlinear solutions [138]. These collaborative schemes offer im-
proved performance over the use of a single linear or nonlinear filter when the
nonlinearity level is unknown or time-varying. However, the computational
cost remains expensive due to the employment of Volterra kernels.

An effective collaborative architecture for NAEC is introduced in this
chapter using the intelligent switching circuit in combination with a functional
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link adaptive filter (FLAF) (see Chapters 8 and 9). The resulting collaborative
NAEC exploits the capabilities of FLAF-based NAECs introduced in Chapter
9 and, in addition, shows robustness against the variations of nonlinearity
degree in an acoustic path.

12.2 COLLABORATIVE FLAF

Changes proposed in SFLAF (see Section 9.2), compared to the standard
FLAF in Chapter 8, gives robustness to the flexibility of an NAEC based on
functional links, due to the possibility to make the right choice for the critical
parameters of the filter. However, some drawbacks may linger on when the
nonlinearity degree varies in time. In particular, a non-optimal filtering may
occur when the nonlinearity degree changes from a medium/high level to a
very low one, such that the nonlinearity can be considered as irrelevant. It is
well known [10, 30], indeed, that NAEC performance may result inferior than
that of a conventional linear AEC when the desired signal is not affected by
any nonlinearity, or when the nonlinearity degree is negligible. In that case,
the nonlinear filter only brings some gradient noise in the filtering process,
thus NAEC performance is subjected to a decrease. This is also the reason
why conventional AEC devices are more commercially available than NAECs.

In order to design an NAEC robust to the changes of nonlinearity degree,
we propose a collaborative architecture based on the convex combination of
adaptive filters (see Section 10.2). Using the convex combination it is possible
to exploit the capabilities of the individual filters, thus performing at least
as well as the best contributing filter. Convex combination may result very
useful in setting the critical parameters of a filter, as it is shown in [6, 126, 4].
However, convex combination might result non-optimal when the goal is to
exploit the capabilities of different models, or adaptive filters having different
modelling tasks, as in our case. As a matter of fact, the convex combination of
a nonlinear FLAF with a linear filter might not fully exploit the linear filter
capability to model the acoustic echo path when the desired signal is affected
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Fig. 12.2: Collaborative functional link adaptive filter.

by any nonlinearity.

Contrariwise, in designing an NAEC, it is desirable to enable the nonlinear
modelling only if necessary. This is the reason why the proposed collaborative
architecture exhibits a linear filtering always active and a nonlinear filtering
which can be adaptively enabled and deactivated by means of an intelligent
switching circuit, as depicted in Fig. 12.2. Such a collaborative architecture
avoids the nonlinear contribution, and consequently the introduction of any
gradient noise, when the echo path is almost linear, and the nonlinear FLAF is
unnecessary.

The collaborative FLAF-based NAEC, that we denote as CFLAF, is depicted
in Fig. 12.2, in which it is possible to notice that the overall output signal
results as:

y [n] = yL [n] + λ [n] yFL [n] (12.1)

where the mixing parameter λ [n] allows to either keep or remove the output
of the nonlinear FLAF as required by the filtering scenario. In equation (12.1)
we omit the term weighted with (1− λ [n]) and related to the AZK, as its
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contribution is null.

Due to the fact that linear and nonlinear filterings have different tasks, each
filter is updated using different error signals in order completely to exploit
the collaborative structure. In particular, the linear filter wL,n pursues the
minimization of the overall error signal e [n] = d [n] − y [n], as the output
contribution of the linear filter is always present. Differently, the nonlinear
FLAF wFL,n is updated using the local error eFL [n] from which the linear
output yL [n] is subtracted, as it is always taken into account by the linear
filtering:

eFL [n] = d [n]− (yL [n] + yFL [n]) . (12.2)

The mixing parameter λ [n] can be adapted in a convex way assuming that
0 ≤ λ [n] ≤ 1 through the adaptation of an auxiliary parameter, a [n], related
to λ [n] by means of a sigmoidal function defined as (10.8). Therefore, λ [n]

is computed adapting a [n] through a gradient descent rule as a [n+ 1] =

a [n] +∆a [n], where ∆a [n] results from a normalized least mean squares (NLMS)
adaptation (see Paragraph 10.3.2):

∆a [n] = −1

2
µa

∂e2 [n]

∂a [n]

= − µa

r [n]
e [n]

∂ (d [n]− yL [n]− λ [n] yFL [n])

∂λ [n]

∂λ [n]

∂a [n]

=
µa

r [n]
e [n] yFL [n]λ [n] (1− λ [n])

(12.3)

where

r [n] = βr [n− 1] + (1− β) y2FL [n] (12.4)

is a rough low-pass filtered estimate of the power of the signal of interest [9].
The parameter β is a smoothing factor which ensures that r [n] is adapted
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faster than any filter component. The value of a [n] is kept within [4,−4] for
practical reasons [6] (see Section 10.3).

The proposed CFLAF architecture is robust against any nonlinearity level,
since when the echo path is merely linear λ [n] converges towards 0 and the
whole scheme behaves like a purely linear filter, thus avoiding any gradient
noise from the nonlinear FLAF. On the other hand, when the echo path conveys
nonlinearities the mixing parameter approaches 1 according to the nonlinearity
level in the echo path. Note that when λ [n] = 1 the CFLAF architecture
performs like the SFLAF.

12.3 BLOCK-BASED COLLABORATIVE FLAF

A further weak spot of an FLAF-based NAEC may be a failed control over
the expanded buffer. In fact, a control in that sense can be useful when the non-
linearity degree is unknown. In the previous subsection, we saw how a CFLAF
is able to be robust when the nonlinearity degree varies from a negligible value
to a detectable one and vice-versa. However, significant differences may occur
when the nonlinearity degree varies between detectable levels with different
intensity. As a matter of fact, a high expansion order may be necessary in order
to model a high nonlinearity degree, so that the length of the expanded buffer
is sufficiently large to ensure a high number of nonlinear elements. On the
other hand, in case of detectable nonlinearity with a low/medium-intensity
a large number of coefficients may cause an overfitting plight and, therefore,
introduce some gradient noise, thus degrading filtering performance.

In order to overcome this drawback, we propose an improved CFLAF
architecture featuring a block-based convex combination [4], that we name as
block-based collaborative FLAF (BCFLAF). As we saw in the previous section,
the adaptive combination in CFLAF allows to adaptively deactivate the whole
nonlinear filtering whether not necessary. Similarly, the main idea which
underpins BCFLAF approach is that of dividing the expanded buffer into
blocks and adapting each block with its own mixing parameter, so that it is
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Fig. 12.3: Nonlinear adaptive path in a block-based collaborative FLAF.

possible to adaptively deactivate those blocks which are not useful to model
nonlinearities. Due to the fact that the nonlinear filtering strictly depends on
the length of the expanded buffer, and therefore on the number of nonlinear
elements, it is possible to divide the expanded buffer in blocks just according to
the desired accuracy. A sufficiently large number [6] of blocks may result in a
high accuracy but also in an increase of the computational cost. Therefore, the
block-based combination actually reduces the number of nonlinear elements
selected for the nonlinear filtering and therefore avoids the introduction of
any gradient noise.

The convex combination introduced in CFLAF, and described by equa-
tion (12.1), adopts the same mixing parameter for all weights. On the other

184

Chapter 12. COLLABORATIVE ARCHITECTURES FOR NAEC

hand, considering a number of L blocks, each one consisting of Mb = Me/L

coefficients, it is possible to express the output of the BCFLAF as:

y [n] = yL [n] +

L−1∑
l=0

∑
k∈Il

λl [n] gk [n]wFL,k [n− 1] (12.5)

where λl [n] is the mixing parameter related to the l-th block, wFL,k [n− 1]

refers to the m-th coefficients of each block, and Il = [l ·Mb, . . . , (l + 1)Mb − 1]

is the range of indices related to the coefficients of the l-th block.

The block-based combination also affects the adaptation of the nonlinear
filter wFL,n, which becomes:

wFL,n = wFL,n−1 + µFL

eFL [n]
∑L−1

l=0

∑
k∈Il λl [n] gk [n]

δFL +
∑L−1

l=0

∑
k∈Il |λl [n] gk [n]|2

(12.6)

where µFL and δFL are respectively the step size and the regularization param-
eter for the all the blocks of the nonlinear filter.

The L mixing parameters can be adapted similarly to the equation (12.3) of
the CFLAF case. Therefore, defining λl [n] = sgm (al [n]), with l = 0, . . . , L− 1,
the updating rule for each auxiliary parameter is given by:

al [n+ 1] =al [n] +
µa

r [n]
e [n]λl [n] (1− λl [n])

×
L−1∑
l=0

∑
k∈Il

gk [n]wFL,k [n] .
(12.7)

A graphical representation of the nonlinear filtering carried out by BCFLAF
architecture is depicted in Fig. 12.3.
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12.4 EXPERIMENTAL RESULTS

In this section we evaluate the performance of the proposed CFLAF in
an acoustic echo cancellation scenario. We use the same experimental setup
of Section 9.3 and also the same input signals having a length of 10 seconds.
However, if the acoustic channel is nonlinear and the degree of nonlinearity
remains constant, an NAEC using the CFLAF yields the same performance
of the SFLAF, according to what said in Section 12.2. Therefore, in order to
show the advantages of the convex combination, we consider a change of
the nonlinearity level in the echo path. In fact, we start the process in linear
conditions, i.e. the nonlinearities in the AIR are neglegible so that the acoustic
path can be assumed as linear. After 5 seconds from the start of the process
we introduce a clipping nonlinearity, the same as in Section 9.3.

In these scenario conditions, we compare the performance of three acoustic
echo canceller in terms of ERLE: a conventional linear AEC, an NAEC based
on the SFLAF and an NAEC based on the CFLAF. In a first experiment we
consider the white Gaussian input and we use an NLMS algorithm to update
the filters for all the three echo cancellers. The result is depicted in Fig. 12.4
in which it is possible to see that in the first half of the process, the best
performing filter is the conventional NLMS, due to the fact that the AIR is
purely linear. In this case the SFLAF shows a worse behaviour due to the
gradient noise introduced by the nonlinear elements of the filter. However,
it is possible to notice that, for the first 5 seconds, the CFLAF displays the
same behaviour of the NLMS, and this is due to the fact that the intelligent
switching circuit inside the CFLAF detects the absence of nonlinearities and
selects the output contribution of the AZK; in this way the whole CFLAF
reduces to be a linear filter.

However, in the second half of the process the nature of the AIR turns to be
nonlinear and an immediate consequence is the performance decrease of the
NLMS in Fig. 12.4. On the other side both the SFLAF and the CFLAF exploit
the capabilities of the functional link based filtering and display better perfor-
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Linear Nonlinear

Fig. 12.4: Performance comparison in terms of ERLE between a linear, an SFLAF-based and
a CFLAF-based echo cancellers in case of white Gaussian input. All the filters are updated
using an NLMS algorithm.

mance than the linear AEC. However, due to the different initial conditions (at
second 5) the CFLAF performs better than the SFLAF. Therefore, it is possible
to state that, comparing to the NLMS and the SFLAF, the CFLAF is always
the best performing acoustic echo canceller notwithstanding the nonlinearity
degree in the echo path.

Same conclusions, even if with less evident differences, result from a
second experiment using the female speech signal as input, as it is possible to
see from Fig. 12.5. In this second experiment all the filters are updated using
an APA with a projection order of K = 3.

Let us note that in this case it is difficult to comprehend the real benefits
deriving from the collaborative architectures due to the fact that the ERLE does
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Linear Nonlinear

Fig. 12.5: Performance comparison in terms of ERLE between a linear, an SFLAF-based and
a CFLAF-based echo cancellers in case of female speech input. All the filters are updated using
an APA.

not reflect the perceived quality improvement of the speech, which is more
evident than the ERLE improvement. In the linear case this lack is plugged
by the normalized misalignment (see Section 3.4), however in the nonlinear
case it is not possible to dispose of a similar performance measure, and it is
often difficult to achieve a complete evaluation of an NAEC only using the
ERLE, even if it is the most used measure in literature for the evaluation of a
nonlinear echo canceller.
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12.5 CONCLUSIONS

In this chapter we have introduced robust acoustic echo cancellers based on
the adaptive combination of filters. In particular, we exploits the capabilities
of the convex combination to develop an intelligent switching circuit which
allows the combination of adaptive filters from different models. In this case,
we have combined a linear adaptive filter and a nonlinear adaptive filter, thus
obtaining collaborative filtering architecture that can be used for nonlinear
echo cancellation. Such collaborative architectures have shown a more robust
behaviour compared with other nonlinear echo cancellers notwithstanding
the nonlinearity level in the echo path. This result paves the way for the de-
velopment of more sophisticated architectures able to solve similar problems
both for acoustic applications and also for other kinds of application.
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PART V

CONCLUSIONS

—There are two possible outcomes:
if the result confirms the hypothesis, then you’ve made a measurement.

If the result is contrary to the hypothesis, then you’ve made a discovery.
Enrico Fermi
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CONCLUSIONS AND OUTLOOKS

THE main motivations which underlie this dissertation work spring
from the new directions towards which speech telecommunications
are going to. Immersive speech communications are becoming a reality

and soon enough will become part of our daily life. However, immersive
communications entail the use of displaced microphones and moreover take
place in multisource environments where interfering signals may degrade
quality and intelligibility of the desired speech source. Therefore, acquisition
of desired signals with high quality is far more difficult and challenging for
immersive communications than in the classical telephony environment where
the microphone is close to the user.

Thereof the necessity to develop intelligent acoustic interfaces is increasingly
pressing. An intelligent acoustic interface aims at extracting, from audio
signals, desired informations for an acoustic environment, and, at the same
time, has to reproduce remote desired acoustic information taking into account
the perceptive requirements of a speech communication. To this end an
intelligent acoustic interface has to model the acoustic channel, and the more
“intelligent” way to do that, looking on the user requirements, is to employ
adaptive filtering algorithms.
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In this dissertation work we have investigated adaptive algorithms ex-
pressly designed for intelligent acoustic interfaces. For this purpose, the work
is structured in three main parts.

In the first part we dealt with linear adaptive algorithms in order to tackle
acoustic limitations deriving from the modelling of the acoustic impulse re-
sponse, the presence of nonstationary sources, the presence of interfering
phenomena, such as the “double talk”. In this part, starting from the study
of new class of adaptive algorithms, such as the proportionate algorithms, we
have formulated an alternative framework for the derivation of both classic
stochastic algorithms and proportionate ones. Moreover, we proposed efficient
proportionate algorithms based on the affine projection and on the variable step
size, able to model an acoustic path even in adverse environment conditions.

In the second part we took into account nonlinear limitation, caused by
the introduction of loudspeaker distortions in the acoustic path. This is a
quite tricky problem, since nonlinearities strongly decrease the quality of a
speech communication and due to the fact that commercial nonlinear filtering
algorithms are not able yet to satisfy the quality requirements of a speech
communication. In order to address this problem we proposed a novel nonlin-
ear filtering model, called functional link adaptive filter, that we have used to
develop ad hoc nonlinear adaptive algorithms for the modelling of nonlinear
acoustic paths.

In the last part of this thesis, exploiting the adaptive algorithms proposed
in the previous two parts, we developed more sophisticated adaptive filtering
architectures which are more robust against adverse conditions of real sce-
narios. Such architectures have been developed exploiting the capabilities of
adaptive combinations of filters. The main motivation, which underlies this study,
is based on a common problem in the modelling of a nonlinear acoustic path.
In fact, in this case, a kind of nonlinearity highly varying, in amplitude or in
time, may require to change the filter design during the adaptation. Moreover,
another important troubling situation occurs when the desired signal is not
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known a priori, thus it is difficult to choose whether adopting a linear filter or
a nonlinear model. This trouble, along with the expensive computational cost
of commercial nonlinear adaptive filters, affects the strategies of many com-
panies that provide teleconferencing services, which often choose to employ
only linear filters even at the expense of communication quality. In order to
tackle this problem we proposed collaborative filtering architectures which are
able to model an acoustic impulse response apart from its nature, whether it is
linear or nonlinear.

The results achieved in this work pave the way for future research. A main
relevance could be reserved to the modelling of nonlinear acoustic channel.
In fact, the introduction of a new nonlinear model leads to novel interesting
scenarios that can be deepened.

First of all, it could be possible to work on FLAF model in order to reduce
the drawbacks making it a more consistent model. Moreover, it could be
possible to exploits the capabilities of adaptive algorithms to develop more
robust nonlinear adaptive filters. For example it is thinkable to apply the
sparsity constraints to the modelling of the nonlinearities. This could lead to a
further performance improvement.

Another important point is the fact that all the filtering techniques intro-
duced in this work can be extended in the multichannel domain, due to the
fact that immersive speech communications are based on the use of MIMO
systems.

Moreover, as we have seen, a weak point of such techniques is their not
appropriate evaluation. Immersive communications are based on perceived
quality of a speech signal, thus the use of performance measures that includes
also a perceptive evaluation of the filtering could be more proper.

Furthermore, being these proposed techniques very flexible, their use is
not limited only to acoustic application, thus it could be possible to exploit
their capabilities to develop ad hoc adaptive filtering algorithms.

195



196

REFERENCES

[1] F. Albu and H. K. Kwan, “A new block exact affine projection algorithm,” in
Proc. of the IEEE International Symposium on Circuits and Systems (ISCAS ’05),
vol. 5, Kobe, Japan, May 23-26 2005, pp. 4337–4340.

[2] S. Amari, “Natural gradient works efficiently in learning,” Neural Computation,
vol. 10, pp. 251–276, Feb. 1998.

[3] S. Amari and S. C. Douglas, “Why natural gradient?” in Proc. of the IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP ’98),
vol. 2, Seattle, WA, May 12-15 1998, pp. 1213–1216.

[4] J. Arenas-García and A. R. Figueiras-Vidal, “Adaptive combination of propor-
tionate filters for sparse echo cancellation,” IEEE Transactions on Audio, Speech,
and Language Processing, vol. 17, no. 6, pp. 1087–1098, Aug. 2009.

[5] J. Arenas-García, A. R. Figueiras-Vidal, and A. H. Sayed, “Steady state perfor-
mance of convex combinations of adaptive filters,” in Proc. of the IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing (ICASSP ’05), vol. 4,
Philadelphia, PA, Mar. 18-23 2005, pp. 33–36.

[6] ——, “Mean-square performance of a convex combination of two adaptive
filters,” IEEE Transactions on Signal Processing, vol. 54, no. 3, pp. 1078–1090, 2006.

[7] J. Arenas-García, V. Gómez-Verdejo, and A. R. Figueiras-Vidal, “New algo-
rithms for improved adaptive convex combination of LMS transversal filters,”
IEEE Transactions on Instrumentation and Measurement, vol. 54, no. 6, pp. 2239–
2249, Dec. 2005.

197



REFERENCES

[8] J. Arenas-García, V. Gómez-Verdejo, M. Martínez-Ramón, and A. R. Figueiras-
Vidal, “Separate-variable adaptive combination of LMS adaptive filters for plant
identification,” in Proc. of the IEEE International Workshop on Neural Networks for
Signal Processing (NNSP ’03), Toulouse, France, Sep. 17-19 2003, pp. 239–248.

[9] L. A. Azpicueta-Ruiz, A. R. Figueiras-Vidal, and J. Arenas-García, “A normal-
ized adaptation scheme for the convex combination of two adaptive filters,”
in Proc. of the IEEE 13th International Conference on Acoustics, Speech and Signal
Processing (ICASSP ’08), Las Vegas, NV, Mar. 30 - Apr. 4 2008, pp. 3301–3304.

[10] L. A. Azpicueta-Ruiz, M. Zeller, A. R. Figueiras-Vidal, J. Arenas-García, and
W. Kellermann, “Adaptive combination of Volterra kernels and its application
to nonlinear acoustic echo cancellation,” IEEE Transactions on Audio, Speech, and
Language Processing, vol. 19, no. 1, pp. 97–110, Jan. 2011.

[11] J. Benesty and P. Duhamel, “A fast exact least mean square adaptive algorithm,”
IEEE Transactions on Signal Processing, vol. 40, no. 12, pp. 2904–2920, Dec. 1992.

[12] J. Benesty, T. Gänsler, D. R. Morgan, M. M. Sondhi, and S. L. Gay, Advances
in Network and Acoustic Echo Cancellation. Berlin, Heidelberg, New York:
Springer-Verlag, 2001.

[13] J. Benesty and S. L. Gay, “An improved PNLMS algorithm,” in Proc. of the IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP ’02),
vol. 2, Orlando, FL, May 13-17 2002, pp. 1881–1884.

[14] J. Benesty and Y. Huang, “The LMS, PNLMS, and exponentiated gradient
algorithms,” in Proc. of the European Signal Processing Conference (EUSIPCO ’04),
Vienna, Austria, Sep. 6-10 2004, pp. 721–724.

[15] E. Benetos and S. Dixon, “Joint multi-pitch detection using harmonic envelope
estimation for polyphonic music transcription,” IEEE Journal of Selected Topics
in Signal Processing, vol. 5, no. 6, pp. 1111–1123, Oct. 2011.

[16] D. A. Berkley and O. M. M. Mitchell, “Seeking the ideal in “hands-free” tele-
phony,” Bell Labs Record, vol. 52, no. 10, pp. 318–325, Nov. 1974.

[17] N. J. Bershad, J. C. M. Bermudez, and J. Tourneret, “An affine combination of
two LMS adaptive filters - Transient mean-square analysis,” IEEE Transactions
on Signal Processing, vol. 56, no. 5, pp. 853–1864, May 2008.

[18] N. Birkett and R. A. Goubran, “Limitations of handsfree acoustic echo cancellers
due to nonlinear loudspeaker distortion and enclosure vibration effects,” in Proc.
of the IEEE Workshop on Applications of Signal Processing to Audio and Acoustics
(WASPAA ’95), New Paltz, NY, Oct. 15-18 1995, pp. 103–106.

198

REFERENCES

[19] N. A. Birkett and R. A. Goubran, “Acoustic echo cancellation using NLMS-
neural network structures,” in Proc. of the IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP ’95), vol. 5, Detroit, MI, May 9-12 1995,
pp. 3035–3038.

[20] M. Brandstein and D. Ward, Eds., Microphone Arrays: Signal Processing Techniques
and Applications. New York, NY: Springer, 2001.

[21] R. Brooks, “Elephants don’t play chess,” Robotics and Autonomous Systems, vol. 6,
no. 1-2, pp. 3–15, Jun. 1990.

[22] D. S. Broomhead and D. H. Lowe, “Multivariable functional interpolation and
adaptive networks,” Complex Systems, vol. 2, pp. 321–355, 1988.

[23] T. G. Burton, R. A. Goubran, and F. Beaucoup, “Nonlinear system identification
using a subband adaptive Volterra filter,” IEEE Transactions on Instrumentation
and Measurement, vol. 58, no. 5, pp. 1389–1397, May 2009.

[24] D. R. Campbell, K. J. Palomaki, and G. J. Brown, “Roomsim, a MATLAB simula-
tion of “shoebox” room acoustics for use in teaching and research,” Computing
and Information Systems, vol. 9, no. 3, pp. 48–51, 2005.

[25] J. A. Chambers, O. Tanrikulu, and A. Constantinides, “Least mean mixed-norm
adaptive filtering,” Electronics Letters, vol. 30, no. 19, pp. 1574–1575, 1994.

[26] A. Cichocki and R. Unbehauen, Neural Networks for Optimisation and Signal
Processing. Chichester, UK: John Wiley & Sons, Ltd., 1993.

[27] D. Comminiello, L. A. Azpicueta-Ruiz, M. Scarpiniti, A. Uncini, and J. Arenas-
Garcia, “Functional link based architectures for nonlinear acoustic echo cancell-
ation,” in Proc. of the IEEE Joint Workshop on Hands-free Speech Communication
and Microphone Arrays (HSCMA ’11), Edinburgh, UK, May 30 - Jun. 1 2011, pp.
180–184.

[28] D. Comminiello, M. Scarpiniti, R. Parisi, A. Cirillo, M. Falcone, and A. Uncini,
“Multi-stage collaborative microphone array beamforming in presence of non-
stationary interfering signals,” in Proc. of the International Workshop on Machine
Listening in Multisource Environments (CHiME ’11), Florence, Italy, Sep. 1 2011,
pp. 64–67.

[29] D. Comminiello, M. Scarpiniti, R. Parisi, and A. Uncini, “A functional link
based nonlinear echo canceller exploiting sparsity,” in Proc. of the International
Workshop on Acoustic Echo and Noise Control (IWAENC ’10), Tel Aviv, Israel, Aug.
30- Sep. 2 2010.

[30] ——, “A novel affine projection algorithm for superdirective microphone array
beamforming,” in Proc. of the IEEE International Symposium on Circuits and
Systems (ISCAS ’10), Paris, France, May 30 - Jun. 2 2010, pp. 2127–2130.

199



REFERENCES

[31] J. R. Cooperstock, “Multimodal telepresence systems,” IEEE Signal Processing
Magazine, vol. 28, no. 1, pp. 77–86, Jan. 2011.

[32] J.-P. Costa, A. Lagrange, and A. Arliaud, “Acoustic echo cancellation using
nonlinear cascade filters,” in Proc. of the IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP ’03), vol. 5, Hong Kong, Apr. 6-10 2003, pp.
389–392.

[33] M. Cristani, M. Bicego, and V. Murino, “Audio-visual event recognition in
surveillance video sequences,” IEEE Transactions on Multimedia, vol. 9, no. 2, pp.
257–267, Feb. 2007.

[34] G. Cybenko, “Approximation by superpositions of a sigmoidal function,” Math-
ematics of Control, Signals, and Systems (MCSS), vol. 2, no. 4, pp. 303–314, Dec.
1989.

[35] S. Dehuri and S. B. Cho, “A comprehensive survey on functional link neural
networks and an adaptive PSO-BP learning for CFLNN,” Neural Computing &
Applications, vol. 19, no. 2, pp. 187–205, 2010.

[36] P. S. R. Diniz, Adaptive Filtering: Algorithms and Practical Implementations, 3rd ed.
New York, NY: Springer, 2008.

[37] S. C. Douglas and S. Amari, “Natural gradient adaptation,” in Unsupervised
Adaptive Filtering, Vol. 1: Blind source Separation, S. Haykin, Ed. New York, NY:
John Wiley & Sons, Ltd., 2000, ch. 2, pp. 13–61.

[38] H. L. Dreyfus, What Computers Still Can’t Do - A Critique of Artificial Reason.
Cambridge, MA: MIT Press, 1992.

[39] D. L. Duttweiler, “A twelve-channel digital echo canceler,” IEEE Transactions on
Communications, vol. 26, no. 5, pp. 647–653, May 1978.

[40] ——, “Proportionate normalized least-mean-squares adaptation in echo cancel-
ers,” IEEE Transactions on Speech and Audio Processing, vol. 8, no. 5, pp. 508–518,
Sep. 2000.

[41] E. Eweda, “Comparison of RLS, LMS and sign algorithms for tracking randomly
time-varying channels,” IEEE Transactions on Signal Processing, vol. 42, no. 11,
pp. 2937–2944, Nov. 1994.

[42] B. Farhang-Boroujeny, Adaptive Filters Theory and Applications. Chichester, UK:
John Wiley /& Sons, 1999.

[43] A. Fermo, A. Carini, and G. L. Sicuranza, “Analysis of different low complexity
nonlinear filters for acoustic echo cancellation,” in Proc. of the 1st International
Workshop on Image and Signal Processing and Analysis (IWISPA ’00), Pula, Croatia,
Jun. 14-15 2000, pp. 261–266.

200

REFERENCES

[44] ——, “Simplified Volterra filters for acoustic echo cancellation in GSM re-
ceivers,” in Proc. of the European Signal Processing Conference (EUSIPCO ’00),
Tampere, Finland, Sep. 4-8 2000.

[45] J. L. Flanagan, R. Johnson, J. D. andZahn, and G. W. Elko, “Computer-steered
microphone arrays for sound transduction in large rooms,” Journal of Acoustical
Society of America, vol. 78, no. 5, pp. 1508–1518, Nov. 1985.

[46] J. Fu and W.-P. Zhu, “A nonlinear acoustic echo canceller using sigmoid trans-
form in conjunction with RLS algorithm,” IEEE Transactions on Circuits and
Systems II, Express Briefs, vol. 55, no. 10, pp. 1056–1060, Oct. 2008.

[47] ——, “A simplified structure of second-order Volterra filters for nonlinear
acoustic echo cancellation,” in Proc. of the IEEE International Symposium on
Circuits and Systems (ISCAS ’10), Paris, France, May 30 - Jun. 2 2010, pp. 2366–
2369.

[48] T. Gänsler, J. Benesty, S. L. Gay, and M. M. Sondhi, “A robust proportionate
affine projection algorithm for network echo cancellation,” in Proc. of the IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP ’00),
vol. 2, Istanbul, Turkey, Jun. 5-9 2000, pp. 796–796.

[49] F. X. Y. Gao and W. M. Snelgrove, “Adaptive linearization of a loudspeaker,” in
Proc. of the IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP ’91), vol. 5, Toronto, Canada, Apr. 14-17 1991, pp. 3589–3592.

[50] S. L. Gay, “An efficient, fast converging adaptive filter for network echo ca-
ncellation,” in Proc. of the IEEE 3rd Asilomar Conference on Signals, Systems &
Computers (ACSSC ’98), vol. 1, Pacific Grove, CA, Nov. 1-4 1998, pp. 394–398.

[51] S. L. Gay and S. C. Douglas, “Normalized natural gradient adaptive filtering
for sparse and non-sparse systems,” in Proc. of the IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP ’02), vol. 2, Orlando, FL, May
13-17 2002, pp. 1405–1408.

[52] S. L. Gay and S. Tavathia, “The fast affine projection algorithm,” in Proc. of the
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP
’95), vol. 5, Detroit, MI, May 9-12 1995, pp. 3023–3026.

[53] G. H. Golub and C. F. Van Loan, Matrix Computation. Baltimore, MD and
London: John Hopkins University Press, 1989.

[54] L. Griffiths and C. Jim, “An alternative approach to linearly constrained adap-
tive beamforming,” IEEE Transactions on Antennas and Propagation, vol. 30, no. 1,
pp. 27–34, Jan. 1982.

201



REFERENCES

[55] S. Guarnieri, F. Piazza, and A. Uncini, “Multilayer feedfoward networks with
adaptive spline activation function,” IEEE Transactions on Neural Networks,
vol. 10, no. 3, pp. 672–683, May 1999.

[56] A. Guerin, G. Faucon, and R. Le Bouquin-Jeannes, “Nonlinear acoustic echo
cancellation based on Volterra filters,” IEEE Transactions on Speech and Audio
Processing, vol. 11, no. 6, pp. 672–683, Nov. 2003.

[57] E. Hänsler and G. Schmidt, Acoustic Echo and Noise Control. A Practical Approach.
Hoboken, NJ: John Wiley & Sons, Inc., 2004.

[58] R. W. Harris, D. M. Chabries, and F. A. Bishop, “A variable step (VS) adaptive
filter algorithm,” IEEE Transactions on Acoustics, Speech and Signal Processing,
vol. 34, no. 2, pp. 309–316, 1986.

[59] S. Haykin, Adaptive Filter Theory, 4th ed. Upper Saddle River, NJ: Prentice
Hall, Sep. 2001.

[60] ——, Neural Networks and Learning Machines, 3rd ed. Upper Saddle River, NJ:
Prentice Hall, Nov. 2008.

[61] W. E. Hefley and D. Murray, “Intelligent user interfaces,” in Proc. of the 1st
International Conference on Intelligent User interfaces (IUI ’93). Orlando, FL:
ACM, Jan. 4-7 1993, pp. 3–10.

[62] T. T. Hewett, R. Baecker, S. Card, T. Carey, J. Gasen, M. Mantei, G. Perlman,
S. G., and W. Verplank, ACM SIGCHI Curricula for Human-Computer Interaction,
B. Hefley, Ed. New York, NY: The Association for Computing Machinery, Inc.,
1992.

[63] D. Hongyun and W.-P. Zhu, “Compensation of loudspeaker nonlinearity in
acoustic echo cancellation using raised-cosine function,” IEEE Transactions on
Circuits and Systems II, Express Briefs, vol. 53, no. 11, pp. 1190–1194, Nov. 2006.

[64] O. Hoshuyama, R. A. Goubran, and A. Sugiyama, “A generalized proportionate
variable step-size algorithm for fast changing acoustic environments,” in Proc.
of the IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP ’04), vol. 4, Montreal, Canada, May 17-21 2004, pp. 161–164.

[65] Y. Huang, J. Benesty, and J. Chen, Acoustic MIMO Signal Processing. Berlin:
Springer-Verlag, 2006.

[66] Y. Huang, J. Chen, and J. Benesty, “Immersive audio schemes,” IEEE Signal
Processing Magazine, vol. 28, no. 1, pp. 20–32, Jan. 2011.

[67] B. Jelfs, P. Vayanos, S. Javidi, V. Su Lee Goh, and D. P. Mandic, Signal Processing
Techniques for Knowledge Extraction and Information Fusion. New York, NY:
Springer Science+Business Media, LLC, 2008, ch. Collaborative Adaptive Filters
for Online Knowledgs Extraction and Information Fusion, pp. 3–21.

202

REFERENCES

[68] J.-M. Jot, “Real-time spatial processing of sounds for music, multimedia and in-
teractive human-computer interfaces,” ACM Multimedia Systems Journal, vol. 7,
no. 1, pp. 55–69, Jan. 1999.

[69] T. Kailath, Linear Systems. Englewood Cliffs, NJ: Prentice-Hall, Jan. 1980.

[70] A. J. M. Kaizer, “Modeling of the nonlinear response of an electrodynamic
loudspeaker by a Volterra series expansion,” Journal of the Audio Engineering
Society, vol. 35, no. 6, pp. 421–433, Jun. 1987.

[71] J. Kivinen and M. K. Warmuth, “Exponentiated gradient versus gradient de-
scent for linear predictors,” Information and Computation, vol. 132, no. 1, pp.
1–64, Jan. 1997.

[72] M. S. Klassen and Y. H. Pao, “Characteristics of the functional link net: A higher
order delta rule net,” in Proc. of the IEEE 2nd Annual International Conference on
Neural Networks (ICNN ’88), vol. 1, San Diego, CA, Jul. 24 1988, pp. 507–513.

[73] S. Kozat and A. Singer, “Multi-stage adaptive signal processing algorithms,”
in Proc. of the IEEE Workshop on Sensor Array and Multichannel Signal Processing
(SAM ’00), Cambridge, MA, Mar. 16-17 2000, pp. 380–384.

[74] S. S. Kozat, A. T. Erdogan, A. C. Singer, and A. H. Sayed, “Steady-state MSE
performance analysis of mixture approaches to adaptive filtering,” IEEE Trans-
actions on Signal Processing, vol. 58, no. 8, pp. 4050–4063, Aug. 2010.

[75] R. H. Kwong and E. W. Johnston, “A variable step size LMS algorithm,” IEEE
Transactions on Signal Processing, vol. 40, no. 7, pp. 1663–1642, Jul. 1992.

[76] T. T. Lee and J. T. Jeng, “The Chebyshev polynomial-based unified model neural
networks for functional approximation,” IEEE Transactions on Systems, Man, and
Cybernetics, Part B: Cybernetics, vol. 28, no. 6, pp. 925–935, Dec. 1998.

[77] N. Levinson, “The Wiener RMS (root-mean-square) error criterion in filter
design and prediction,” Journal of Mathematics and Physics, vol. 25, no. 4, pp.
261–278, Jan. 1947.

[78] L. Liu, M. Fukumoto, S. Saiki, and S. Zhang, “A variable step-size proportion-
ate affine projection algorithm for identification of sparse impulse response,”
EURASIP Journal on Advances in Signal Processing, vol. 2009, p. 10, 2009.

[79] R. W. Lucky and H. R. Rudin, “Generalized automatic equalization for commu-
nication channels,” Proc. of the IEEE, vol. 54, no. 3, pp. 439–440, Mar. 1966.

[80] A. Mader, H. Puder, and G. U. Schmidt, “Step-size control for acoustic echo
cancellation filters - an overview,” Signal Processing, vol. 80, no. 9, pp. 1697–1719,
Sep. 2000.

203



REFERENCES

[81] D. P. Mandic, M. Chen, T. Gautama, M. M. Van Hulle, and A. Constantinides,
“On the characterization of the deterministic/stochastic and linear/nonlinear
nature of time series,” Proc. of the Royal Society, vol. 464, no. 2093, pp. 1141–1160,
Feb. 2008.

[82] D. P. Mandic, P. Vayanos, C. Boukis, B. Jelfs, S. Goh, T. Gautama, and
T. Rutkowski, “Collaborative adaptive learning using hybrid filters,” in Proc.
of the IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP ’07), vol. 3, Honolulu, HI, Apr. 15-20 2007, pp. 921–924.

[83] D. G. Manolakis, V. K. Ingle, and S. M. Kogon, Statistical and Adaptive Signal
Processing: Spectral Estimation, Signal Modeling, Adaptive Filtering and Array
Processing. Norwood, MA: Artech House, Inc., Apr. 2005.

[84] M. Martínez-Ramón, J. Arenas-García, A. Navia-Vázquez, and A. R. Figueiras-
Vidal, “An adaptive combination of adaptive filters for plant identification,” in
Proc. of the International Conference on Digital Signal Processing (DSP ’02), vol. 2,
Santorini, Greece, Jul. 1-3 2002, pp. 1195–1198.

[85] V. J. Mathews and S. C. Douglas, Adaptive Filters. Upper Saddle River, NJ:
Prentice Hall, 2003.

[86] V. J. Mathews and G. L. Sicuranza, Polynomial Signal Processing. New York,
NY: John Wiley & Sons, 2000.

[87] M. Maybury, “Intelligent user interfaces: An introduction,” in Proc. of the 4th
International Conference Intelligent User Interfaces (IUI ’99). Los Angeles,CA:
ACM, 1999, pp. 3–4.

[88] J. McCarthy, M. Minsky, N. Rochester, and C. Shannon, “A proposal for dart-
mouth summer research project on artificial intelligence,” Dartmouth College,
Tech. Rep., 1955.

[89] E. Milios, B. Kapralos, A. Kopinska, and S. Stergiopoulos, “Sonification of range
information for 3-D space perception,” IEEE Transactions on Neural Systems and
Rehabilitation Engineering, vol. 11, no. 4, pp. 416–421, Dec. 2003.

[90] A. Namatame and Y. Kimata, “Improving the generalizing capabilities of a
back-propagation network,” International Journal of Neural Networks, vol. 1, no. 2,
pp. 86–94, 1989.

[91] A. Namatame and N. Ueda, “Pattern classification with Chebyshev neural
networks,” International Journal of Neural Networks, vol. 3, pp. 23–31, Mar. 1992.

[92] K. Narendra and K. Parthasarathy, “Identification and control of dynamical
systems using neural networks,” IEEE Transactions on Neural Networks, vol. 1,
no. 1, pp. 4–27, Mar. 1990.

204

REFERENCES

[93] P. A. Naylor, J. Cui, and M. Brookes, “Adaptive algorithms for sparse echo
cancellation,” Signal Processing, vol. 86, no. 6, pp. 1182–1192, Jun. 2005.

[94] S. T. Neely and J. B. Allen, “Invertibility of a room impulse response,” Journal of
Acoustical Society of America, vol. 68, pp. 165–169, Jul. 1979.

[95] A. Newell and H. A. Simon, “Computer science as empirical inquiry: Symbols
and search,” Communications of the ACM, vol. 19, no. 3, pp. 113–126, Mar. 1976.
[Online]. Available: http://doi.acm.org/10.1145/360018.360022

[96] B. S. Nollet and D. L. Jones, “Nonlinear echo cancellation for hands-free speak-
erphones,” in Proc. of the IEEE-EURASIP Workshop on Nonlinear Signal Image
Processing (NSIP ’97), Mackinac Island, MI, Sep. 8-10 1997.

[97] T. Ogunfunmi, Adaptive Nonlinear System Identification: The Volterra and Wiener
Model Approaches. Berlin: Springer-Verlag, 2007.

[98] K. Ozeki and T. Umeda, “An adaptive filtering algorithm using an orthogonal
projection to an affine subspace and its properties,” Electronics and Communica-
tions in Japan, vol. 67-A, no. 5, pp. 19–27, 1984.

[99] C. Paleologu, J. Benesty, and S. Ciochină, “A variable step-size affine projection
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[101] C. Paleologu, S. Ciochină, and J. Benesty, “Variable step-size NLMS algorithm
for under-modeling acoustic echo cancellation,” IEEE Signal Processing Letters,
vol. 15, pp. 5–8, 2008.

[102] ——, “An efficient proportionate affine projection algorithm for echo cancellat-
ion,” IEEE Signal Processing Letters, vol. 17, no. 2, pp. 165–168, Feb. 2010.

[103] Y.-H. Pao, Adaptive Pattern Recognition and Neural Networks. Reading, MA:
Addison-Wesley, 1989.

[104] Y.-H. Pao and R. D. Beer, “The functional link net: A unifying network architec-
ture incorporating higher order effects,” in Proc. of the First Annual Meeting of
the International Neural Network Society (INNS ’88), Boston, MA, Sep. 6 1988.

[105] E. V. Papoulis and T. Stathaki, “A normalized robust mixed-norm adaptive
algorithm for system identification,” IEEE Signal Processing Letters, vol. 11, pp.
56–59, 2004.

[106] R. Parisi, R. Russo, M. Scarpiniti, and A. Uncini, “Performance of acoustic
nonlinear echo cancellation in the presence of reverberation,” in Proc. of the
International Symposium on Frontiers of Research in Speech and Music (FRSM ’09),
Gwalior, India, Dec. 15-16 2009, pp. 106–111.

205



REFERENCES

[107] J. C. Patra, W. C. Chin, P. K. Meher, and G. Chakraborty, “Legendre-FLANN-
based nonlinear channel equalization in wireless communication system,” in
Proc. of the IEEE International Conference on Systems, Man and Cybernetics (SMC
’08), Singapore, Oct. 12-15 2008, pp. 1826–1831.

[108] J. C. Patra and A. C. Kot, “Nonlinear dynamic system identification using
Chebyshev functional link artificial neural networks,” IEEE Transactions on
Systems, Man, and Cybernetics, Part B: Cybernetics, vol. 32, no. 4, pp. 505–511,
Aug. 2002.

[109] J. C. Patra, R. N. Pal, B. N. Chatterji, and G. Panda, “Identification of nonlinear
dynamic systems using functional link artificial neural networks,” IEEE Trans-
actions on Systems, Man, and Cybernetics, Part B: Cybernetics, vol. 29, no. 2, pp.
254–262, Apr. 1999.

[110] J. C. Patra, W. B. Poh, N. S. Chaudhari, and A. Das, “Nonlinear channel equal-
ization with QAM signal using Chebyshev artificial neural network,” in Proc.
of the IEEE International Joint Conference on Neural Networks (IJCNN ’05), vol. 5,
Montreal, Canada, Jul. 31 - Aug. 4 2005, pp. 3214–3219.

[111] J. C. Patra and A. Van Den Bos, “Modeling of an intelligent pressure sensor
using functional link artificial neural networks,” ISA Transactions, vol. 39, no. 1,
pp. 15–27, Feb. 2000.

[112] V. Petrini, “Teoria ed applicazioni del metodo perturbativo nellÕapprendi-
mento di reti neurali,” Master’s thesis, UniversitĹ degli Studi di Ancona, 1996.
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