ABSTRACT

ODERN speech communications are evolving towards a new di-
rection which involves users in a more perceptive way. That is
the immersive experience, which may be considered as the “last-

mile” problem of telecommunications.

One of the main feature of immersive communications is the distant-talking,
i.e. the hands-free (in the broad sense) speech communications without body-
worn or tethered microphones that takes place in a multisource environment
where interfering signals may degrade the communication quality and the
intelligibility of the desired speech source.

In order to preserve speech quality intelligent acoustic interfaces may be
used. An intelligent acoustic interface may comprise multiple microphones
and loudspeakers and its peculiarity is to model the acoustic channel in order
to adapt to user requirements and to environment conditions. This is the
reason why intelligent acoustic interfaces are based on adaptive filtering

algorithms.

The acoustic path modelling entails a set of problems which have to be

taken into account in designing an adaptive filtering algorithm. Such problems
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may be basically generated by a linear or a nonlinear process and can be
tackled respectively by linear or nonlinear adaptive algorithms.

In this work we consider such modelling problems and we propose novel
effective adaptive algorithms that allow acoustic interfaces to be robust against
any interfering signals, thus preserving the perceived quality of desired speech
signals.

As regards linear adaptive algorithms, a class of adaptive filters based on the
sparse nature of the acoustic impulse response has been recently proposed.
We adopt such class of adaptive filters, named proportionate adaptive filters,
and derive a general framework from which it is possible to derive any linear
adaptive algorithm. Using such framework we also propose some efficient
proportionate adaptive algorithms, expressly designed to tackle problems of a
linear nature.

On the other side, in order to address problems deriving from a nonlinear
process, we propose a novel filtering model which performs a nonlinear
transformations by means of functional links. Using such nonlinear model, we
propose functional link adaptive filters which provide an efficient solution to the
modelling of a nonlinear acoustic channel.

Finally, we introduce robust filtering architectures based on adaptive com-
binations of filters that allow acoustic interfaces to more effectively adapt to
environment conditions, thus providing a powerful mean to immersive speech

communications.
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