
PART II

LINEAR ADAPTIVE ALGORITHMS

—Playing chess is about the dumbest question you can ask.
But, if you want, maybe can make money that way, or something.

Noam Chomsky
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4.1 INTRODUCTION TO ADAPTIVE FILTERS

In studying digital signal processing (DSP) techniques, the term “adaptive”
is used when a (digital or analog) system is able to automatically “adjust” its
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4.1. Introduction to adaptive filters

parameters in response to input stimuli in order to achieve a processing goal
[146].

An adaptive filter is defined as a self-designing system that relies for its
operation on a recursive algorithm, which makes it possible for the filter to
perform satisfactorily in an environment where knowledge of the relevant
statistics is not available [59]. In that context, an adaptive filter can be viewed
as an “intelligent circuit” able to adapt according to a predetermined law
[146].

The ability of an adaptive filter to carry out a certain target is usually
expressed through a criterion that minimizes a given cost function, often de-
noted as J (·), which is a function of filter parameters. The procedure which
determines the variation law of the filter parameters, according to a given
cost function, is also known as adaptive algorithm, or in same cases learning
algorithm.

Usability of adaptive filtering techniques for the solution of real problems
is widely stretched as much as fields of their applications. Adaptive filters are
extensively used in many DSP areas, such as: modelling, estimate, localization,
source separation, etc. Due to the rise of neural networks, which may be
considered as a particular nonlinear class of adaptive filters, the field of interest
has been further extended, thus intersecting artificial intelligence methods in
order to provide consistent solutions even for the so-called ill-posed problems
[146]. Recently such methods have merged into an infant subject named
computational intelligence.

4.1.1 Classification of adaptive filters

There are a lot of way of classifying adaptive filters [146], however, the
most popular classification may be carried out based on the learning algorithm
and on the input-output relation.

A first subdivision concerns the adopted learning algorithm, i.e. the modal-
ity with which it is possible to adapt the filter parameters. In particular,
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Chapter 4. FUNDAMENTALS OF ADAPTIVE FILTERING
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Fig. 4.1: Scheme of a supervised adaptive filter.

adaptive filters can be classified into:

• supervised adaptive filters - require the availability of a training sequence
that provides different realizations of a desired response for a specified
input signal vector. The desired response is compared against the actual
response of the filter due to the input signal vector, and the resulting
error signal is used to adjust the free parameters of the filter. The process
of parameter adjustments is continued in a step-by-step fashion until a
steady-state condition is established. A representation of a supervised
adaptive filter is depicted in Fig. 4.1;

• unsupervised adaptive filters - perform adjustments of its free parameters
without the need for a desired response. For the filter to perform its
function, its design includes a set of rules that enable it to compute an
input-output mapping with specific desirable properties. In the signal-
processing literature, unsupervised adaptive filtering is often referred
to as blind deconvolution or blind adaptation [59]. However, in this
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4.1. Introduction to adaptive filters

dissertation we essentially deal with supervised adaptive filters.

Adaptive filters may also be classified according to an input-output relation.
Denoting with wn the time-varying vector of filter coefficients (i.e. filter pa-
rameters), it is possible to classify an adaptive filter according to the properties
of an operator T {·} which defines the relation between the input of the filter
x [n] and its output y [n]:

y [n] = T {x [n] ,wn} . (4.1)

On this basis, two main groups of adaptive filters can be characterized:

• linear adaptive filters - for the operator T {·} the superposition principle
holds. Linear adaptive filters compute an estimate of a desired response
by using a linear combination of the available set of observables applied
to the input of the filter [59, 146];

• nonlinear adaptive filters - for the operator T {·} the superposition principle
is not valid anymore [59]. In this case it is usually necessary to define
further sub-labels due to the nature of the nonlinearity, that can be
monodrome, invertible, uninvertible, static, dynamic, etc. [146].

Therefore, sub-labels for linear and nonlinear adaptive filters, always taking
into account the input-output relation, may be the following ones:

• static - the output at time instant n only depends on the input at time
instant n; in this case the operator T {·} has the same properties of a
function;

• dynamic with finite memory or FIR - the output at time instant n depends
on the input samples according to instants n, n− 1, . . . , n−M + 1 of a
time window, i.e.:

y [n] = T {x [n] , x [n− 1] , . . . , x [n−M + 1] ,wn} (4.2)
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Chapter 4. FUNDAMENTALS OF ADAPTIVE FILTERING

where M is the length of the time window, i.e. the filter length;

• dynamic with infinite memory or IIR - the output at time instant n depends
on the input at time instants n, n− 1, . . . , n−M + 1, and on past output
samples, i.e.:

y [n] =T {x [n] , x [n− 1] , . . . , x [n−M + 1] ,

y [n− 1] , . . . , y [n−M + 1] ,wn} .
(4.3)

A possible classification of adaptive filters [146] based on the input-output
relation (restricted to the dynamic case), is depicted in Fig. 4.2.

4.2 LINEAR OPTIMUM FILTERING

Linear optimum discrete-time filters are also known as Wiener filters, which are
an extremely useful tool since its invention in the early 30’s by Norbert Wiener
[156]. Wiener was one of the first researchers to treat the filtering problem of
estimating a process corrupted by additive noise. The optimum estimate that
he derived required the solution of an integral equation known as the Wiener-
Hopf equation [158]. Soon after he published his work, Levinson formulated
the same problem in discrete time [77]. Levinson’s contribution has had a
great impact on the field of adaptive signal processing. Indeed, thanks to him,
Wiener’s ideas have become more accessible to many engineers [65]. Wiener
theory plays a fundamental role in acoustic applications in which the AIR
between a loudspeaker and a microphone needs to be identified. Thanks to
many adaptive algorithms directly derived from the Wiener-Hopf equations,
this task is now rather easy.

With the Wiener theory, it is possible to identify an unknown system, that
in the acoustic case is the AIR. Given the input signal x [n] and the desired
signal d [n] it is possible to define the error signal e [n]:
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Fig. 4.2: Classification of adaptive filters based on the input-output relation.

e [n] = d [n]− y [n]

= d [n]− xT
nwn−1

(4.4)

where y [n] is the filter output and vector wn ∈ RM =
[
w0 [n] w1 [n] . . .

wM−1 [n]
]T

is an estimate of the AIR to identify. We suppose that the AIR
and the vector wn have the same length M .

To find the optimal filter, we need to minimize a cost function which is
always built around the error signal (4.3) [59, 65]. The usual choice for this
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Chapter 4. FUNDAMENTALS OF ADAPTIVE FILTERING

criterion is the mean square error (MSE) [59]:

J (wn) =E
{
e2 [n]

}

=E
{
d2 [n]

}
− E

{
wT

nxnd [n]
}
− E

{
xnw

T
nd [n]

}

− E
{
wT

nxnx
T
nwn

}
.

(4.5)

Let us remember that, for definition: σ2
d = E

{
d2 [n]

}
is the variance of the

signal d [n]; gn = E {xnd [n]} ∈ RM is the cross-correlation between the input
xn and the desired signal d [n]; and, finally, Rn = E

{
xnx

T
n

}
∈ RM×M is the

autocorrelation matrix. Equation (4.4) can be brought back in the following
quadratic form [59, 146]:

J (wn) = σ2
d −wT

ngn − gT
nwn +wT

nRnwn (4.6)

The optimal Wiener filter, that we denote as wopt, is the one that cancels the
gradient of J (wn) with respect to wn, i.e.:

∇J (wn) =
∂J (wn)

∂wn
= 0 (4.7)

where the operator ∇ denotes the gradient. We have:

∇J (wn) = 2E

{
e [n]

∂e [n]

∂wn

}

= −2E {e [n]xn} .
(4.8)

Therefore, taking into account (4.5) and (4.7), at the optimum we have:

∇J (wn) =
∂
(
σ2
d −wT

ngn − gT
nw +wT

nRnwn

)
∂wn

= 2 (Rnwn − gn) .

(4.9)
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4.3. Gradient adaptation

Therefore, the solving system results:

Rnwn = gn (4.10)

which corresponds to a linear system of equations, also known as Wiener-
Hopf normal equations [156]. The solution to (4.9), also known as Widrow-Hopf
equation [155, 153], can be written as:

wopt = R−1
n gn (4.11)

Linear optimum filtering provides minimum MSE and therefore helps to
estimate accurately the unknown AIR.

4.3 GRADIENT ADAPTATION

The optimal solution to (4.9) can be obtained employing a gradient descent
optimization procedure.

4.3.1 The steepest descent method

The method of steepest descent gradient, as the name implies, relies on
the slope at any point on the error performance surface to provide the best
direction in which to move. The steepest descent direction gives the greatest
change in elevation of the surface of the cost function for a given step laterally.
The steepest descent procedure uses the knowledge of this direction to move
to a lower point on the surface and find the bottom of the surface in an iterative
manner.

The steepest descent method is based on an iterative approach for finding
the parameter value associated with the minimum of the cost function: simply
move the current parameter value in the direction opposite to that of the
slope of the cost function at the current parameter value. Furthermore, if we
make the magnitude of the change in the parameter value proportional to the
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Chapter 4. FUNDAMENTALS OF ADAPTIVE FILTERING

magnitude of the slope of the cost function, the algorithm will make large
adjustments of the parameter value when its value is far from the optimum
value and will make smaller adjustments to the parameter value when the
value is close to the optimum value [85]. This approach is the essence of the
steepest descent algorithm.

The steepest descent algorithm can be defined considering a recursive solu-
tion to Wiener normal equations (4.10). The algorithm can be represented by
its general form:

wn = wn−1 +
1

2
µ (−∇J (wn−1)) (4.12)

where the value 1/2 is just a proportionality constant and the parameter µ

is termed the step size of the algorithm. Note that for the steepest descent
algorithms n is an iteration index and does not coincide with the time instant.
Denoting J (wn) = E

{
e2 [n]

}
, the explicit expression of the gradient ∇J (wn)

can be easily derived from (4.6), thus resulting in (4.9). Therefore, replacing
(4.9), evaluated at iteration index n − 1, in (4.12), the explicit form of the
steepest descent algorithm results:

wn = wn−1 − µ (Rn−1wn−1 − gn−1)

= (I− µRn−1)wn−1 + µgn−1

(4.13)

where I ∈ RM×M is an identity matrix (therefore it does not require any itera-
tion index). Equation (4.13) is a recursive, multidimensional, finite different
equation in the index n, with initial condition (i.c.) w−1 [146, 59].

4.3.2 Convergence of the steepest descent algorithm

Given that the stationary point of the steepest descent algorithm is the
optimum minimum mean square error (MMSE) solution, a second, equally-
important consideration is whether the algorithm converges at all. In order
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4.3. Gradient adaptation

to analyze the convergence properties of the steepest descent algorithm, let
us consider the misalignment vector of the filter, denoted as un = wn −wopt.
Remembering (4.10), after few passages [59, 146], it results from from (4.13)
that:

un = (I− µRn−1)un−1 (4.14)

Applying the unitary similarity transformation [53] on the correlation matrix Rn,
it is possible to obtain:

Rn = QnΛQT
n =

M−1∑
i=0

λiqn,iq
T
n,i (4.15)

where Λ = diag (λ0, λ1, . . . , λM−1), also known as spectral matrix, is the diag-
onal matrix containing the eigenvalues λi, with i = 0, . . . ,M − 1, of the corre-
lation matrix Rn. Matrix Qn, defined as Qn =

[
qn,0 qn,1 . . . qn,M−1

]
,

is known as modal matrix and it is composed of a set of orthogonal vectors
qn,i having unitary length, defined as eigenvectors of matrix Rn. Matrix Qn is
orthonormal (such that QT

nQn = I, i.e. Q−1
n = QT

n ).

Taking into account the decomposition (4.15), it is possible to rewrite (4.14)
as:

un =
(
I− µQn−1ΛQT

n−1

)
un−1, (4.16)

and setting ûn = QT
nun, where ûn represents the rotated vector un, it follows

that:

ûn = (I− µΛ) ûn−1 (4.17)

Therefore, equation (4.17) consists of a set of M decoupled difference equations
of the first order, such as:

ûi [n] = (1− µλi) ûi [n− 1] (4.18)
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where n > 0 and i = 0, . . . ,M −1. This last equation describe all the M natural
modes of the steepest descent algorithm. The solution to (4.18) can be deter-
mined starting from the i.c. ûi [−1], such that, with a backward substitution, it
is possible to write:

ûi [n] = (1− µλi)
n ûi [n] . (4.19)

Necessary condition so that the algorithm does not diverge, and therefore
for the stability of the algorithm, is that the argument of the exponent is
|1− µλi| < 1, or, equivalently:

0 < µ <
2

λi
. (4.20)

This proves that, with an appropriate choice of the step size µ satisfying (4.20),
ûi [n] tends to zero for n → ∞. This implies that:

lim
n→∞

wn = wopt, ∀w−1 (i.c.) . (4.21)

It follows that the vector wn converges exponentially and exactly to the opti-
mum.

4.4 STOCHASTIC GRADIENT ADAPTIVE
ALGORITHMS

The method of steepest descent can be used to find the optimum MMSE
estimate of wopt in an iterative fashion. However, this procedure uses the
statistics of the input and desired response signals and not on the actual
measured signals. In practice, the input signal statistics are not known a
priori. Moreover, if these statistics were known and if the autocorrelation
matrix Rn was invertible, we could find the optimum solution given in (4.11)
directly in one step! However, implementing this procedure exactly requires
knowledge of the input signal statistics, which are almost always unknown
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4.4. Stochastic gradient adaptive algorithms

for real-world problems. Therefore, an approximate version of the gradient
descent procedure can be applied to adjust the adaptive filter coefficients using
only the measured signals [59, 120, 85, 146].

More precisely, from equations (4.12) and (4.8), it is possible to see that
the steepest descent method depends on the input data and desired response
signal statistics through the expectation operation that is performed on the
product e [n]xn. This product is the gradient of the squared error function(
e2 [n]

)
/2 with respect to the coefficient vector wn. We can consider the vector

e [n]xn as an approximation of the true gradient of the MSE estimation surface.
This approximation is known as the instantaneous gradient of the MSE surface.
In order to develop a useful and realizable adaptive algorithm it is possible to
replace the gradient vector E {e [n]xn} in the steepest descent update in (4.8)
by its instantaneous approximation e [n]xn. Adaptive filters that are based
on the instantaneous gradient approximation are known as stochastic gradient
adaptive filters [59, 120, 85, 146].

4.4.1 The Least Mean Square Algorithm

The least mean square (LMS) algorithm is the most popular memoryless
stochastic gradient algorithm. Introduced by Widrow-Hoff in 1960 [153], it
consists of simply considering the instantaneous squared error e2 [n] instead
of its expectation. The LMS algorithm can be viewed as a stochastic approxi-
mation of the steepest descent algorithm. Another important aspect concerns
with the iteration index nof the algorithm that, in this case, coincides with the
time index [146].

Denoting with ∇Ĵ (wn−1) ≈ ∇J (wn−1) the gradient vector estimate, the
general expression of the adaptation, similarly to (4.12), turns to be:

wn = wn−1 +
1

2
µ
(
−∇Ĵ (wn−1)

)
(4.22)

with an a priori error [59, 120], or simply named error, defined as:
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e [n] = d [n]− y [n]

= d [n]− xT
nwn−1

(4.23)

The explicit expression of the gradient vector ∇Ĵ (wn−1):

∇Ĵ (wn−1) =
∂e2 [n]

∂wn−1
= 2e [n]

∂e [n]

∂wn−1

= 2e [n]
∂
(
d [n]− xT

nwn−1

)
∂wn−1

= −2e [n]xn

(4.24)

such that the adaptation equation (4.22) simply becomes:

wn = wn−1 + µe [n]xn. (4.25)

The algorithm is adjusted by the step size µ, which in this basis formulation is
kept constant. Similarly to what done in the previous section for the steepest
descent algorithm, it is possible to prove that the algorithm converges when:

0 < µ < 2/µmax (4.26)

where λmax represents the larger eigenvalue of the autocorrelation matrix of
the input signal.

4.4.2 The Normalized Least Mean Square Algorithm

The normalized least mean square (NLMS) algorithm is structurally the same
as the LMS, but it differs in the way that the filter coefficients are updated.
In the LMS algorithm the weight adjustment is directly proportional to the
amplitude of input vector samples according to (4.25). Therefore, when the
vector xn is large, the LMS suffers from a gradient noise amplification problem.

To overcome this problem, the adjustment applied to the weight vector at
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each iteration is normalized with respect to the squared Euclidean norm of xn

[59, 120], thus the updating rule results:

wn = wn−1 + µ
e [n]xn

δNLMS + xT
nxn

(4.27)

with 0 < µ ≤ 2: δNLMS > 0 is the regularization parameter which prevents
division by zero during initialization when xn = 0.

4.4.3 The Recursive Least Squares Algorithm

Least squares algorithms aim at the minimization of the sum of the squares
of the difference between the desired signal and the model filter output [59,
120]. When new samples of the incoming signals are received at every iteration,
the solution for the least squares problem can be computed in recursive form
resulting in the recursive least squares (RLS) algorithms.

The RLS algorithm is known to pursue fast convergence even when the
eigenvalue spread of the input signal correlation matrix is large. This algo-
rithm has excellent performance when working in time-varying environments.
All these advantages come with the cost of an increased computational com-
plexity and some stability problems, which are not as critical in LMS-based
algorithms [59, 120, 36]. The RLS can be classified as a Hessian-based algo-
rithm, thus resulting an algorithm with memory [146, 42].

The cost function for this class of algorithms has the following expression:

Ĵ (wn−1) =
n∑

i=0

βn−i |e [n]|2

=
n∑

i=0

βn−i
∣∣d [i]− xT

nwn−1

∣∣2
(4.28)

where the constant 0 < β ≤ 1, defined as forgetting factor, takes into account the
memory of the algorithm. Therefore, the cost function depends on the actual
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instantaneous error and on error samples evaluated in the past iterations with
a weight continuously smaller. Note that when β = 1 the RLS consider the
same weight for all the past samples; in that case the algorithm has a growing
memory.

Let us take into account the following sequential regression notation with an
input data matrix Xn ∈ RN×M , where N is the length of the analysis window,
defined as:

Xn =




xT
n

xT
n−1

· · ·
xT
n−N+1




T

(4.29)

=




x [n] x [n− 1] · · · x [n−M + 1]

x [n− 1] x [n− 2] · · · x [n−M ]
...

...
. . .

...
x [n−N + 1] x [n−N ] · · · x [n−N −M + 2]




As a consequence the error vector and the desired signal vector are respectively
defined as:

en ∈ RN =
[
e [n] e [n− 1] e [n−N + 1]

]

dn ∈ RN =
[
d [n] d [n− 1] d [n−N + 1]

] (4.30)

Therefore, equation (4.28) can be expressed in the regression notation [146] as:

Ĵ (wn−1) = eTnBnen = Bn ‖dn −Xnwn−1‖22 . (4.31)

where Bn represents a weighted matrix:
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Bn =




1 0 · · · 0

0
. . . · · · 0

...
... βn−1

...
0 0 · · · βn



. (4.32)

Solving for the cost function (4.31), after few passages [59, 120, 146], it is
possible to achieve the following regression equation:

XT
nBnXnwn−1 = XT

nBndn (4.33)

Denoting the correlation estimates as:

Rxx,n = XT
nBnXnwn−1 and Rxd,n = XT

nBndn (4.34)

that can be also expressed as:

Rxx,n =

n∑
i=0

βn−1xix
T
i = βRxx,n−1 + xix

T
i (4.35)

Rxd,n =
n∑

i=0

βn−1xid [i] = βRxd,n−1 + xid [i] (4.36)

such that the correlations can be computed in a recursive way updating the
estimate carried out at the past iteration with new available information. The
solution of the sequential regression (4.33) at n-th time instant can be written
as:

Rxx,nwn−1 = Rxd,n (4.37)

Applying the matrix inversion lemma [53, 59, 146] to the matrix (4.35) and setting
Pn = R−1

xx,n, it is possible to achieve:

Pn = β−1Pn−1 −
β−1Pn−1xnβ

−1xT
nPn−1

1 + β−1xT
nPn−1xn

(4.38)

56



Chapter 4. FUNDAMENTALS OF ADAPTIVE FILTERING

where for computational convenience it is usual to define the vector:

kn =
β−1Pn−1xn

1 + β−1xT
nPn−1xn

(4.39)

also known as Kalman gain, so that the recursion (4.38) can be written as:

Pn = β−1Pn−1 − β−1knx
T
nPn−1 (4.40)

also known as Riccati equation.

The main drawback of the RLS algorithm is its computational cost, thus
LMS based algorithms, while they do not perform as well as RLS, are more
favourable in practical situations.

4.4.4 The Affine Projection Algorithm

The affine projection algorithm (APA) can be interpreted as a generalization
of the NLMS algorithm. The main advantage of the APA over the NLMS
algorithm consists of a superior convergence rate, especially for correlated
inputs, like speech. For this reason, the APA and different versions of it were
found to be very attractive choices for acoustic applications, such as AEC.

The APA, originally proposed in [98], was derived as a generalization of
the NLMS algorithm, in the sense that a filter vector of the NLMS may be
viewed as a one dimensional affine projection, while in the APA the projections
are made in multiple dimensions. When the projection dimension increases,
the convergence rate of the filter vector also increases. However, this also
leads to an increased computational complexity. The APA, like the RLS is a
Hessian-based algorithm, however it is not an “exact” second order adaptive
algorithm since its adaptation uses an estimate of the correlation matrix Rxx,n

“projected” over a subspace with appropriate dimension [146].

In order to derive the classical APA equations, let us consider an FIR
adaptive filter of length M , defined by the coefficients vector wn, and an input
data matrix defined similarly to (4.29) but using a window length N equal
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to K > 0, which is also defined as projection order. Therefore, the input data
matrix is defined as Xn ∈ RK×M , while the error signal and the desired signal
are respectively en, dn ∈ RK , similarly to (4.30). This corresponds to take into
account the last K samples of the input sequence. When K = 1 the adaptation
becomes one dimensional and thus the APA turns to be an NLMS algorithm.
Therefore, the equations that define the classical APA are [98]:

en = dn −Xnwn−1 (4.41)

wn = wn−1 + µXT
n

(
δAPAI+XnX

T
n

)−1
en (4.42)

where δAPA is the regularization factor of the APA and I ∈ RK×K is an identity
matrix.

We will see in the next chapter a general framework for the derivation of
adaptive algorithms, both for these classical stochastic gradient algorithms
and for the proportionate algorithm that will be introduced in the next chapter.
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