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IN the recent past, a family of proportionate adaptive filters has been pro-
posed for use in network telephony and acoustic applications. Propor-
tionate algorithms offer better convergence and tracking performances

than standard stochastic algorithms when the echo path is sparse. In this
chapter, we describe proportionate algorithms introducing an alternative
perspective on proportionate adaptive filters.
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5.1 INTRODUCTION

Nowadays, acoustic echo cancellation (AEC) is a key application in modern
speech communication systems. Echo phenomena are generated in speech
devices by a microphone-loudspeaker coupling, such as a far-end signal is
sent out by a loudspeaker and crosses an echo path before being acquired by
the microphone. Therefore, the acquired signal contains an echo contribution
which may be cancelled by means of an acoustic echo canceller. The main
component of an echo canceller is the adaptive filter which aims at estimating
the acoustic impulse response (AIR). Such applications require adaptive filters
with hundreds or even thousands of taps and their success depends on the
nature of the AIR [57]. Often enough the impulse response is time-varying and
it is affected by echo path changes, different degrees of sparseness, double-talk
events and under-modelling noise [57, 12].

Classic algorithms based on stochastic gradient, such as least mean square
(LMS) and normalized LMS (NLMS), distribute the adaptation energy among
all filter coefficients causing a very slow convergence for long filters [120, 59].
As a result, the application of these filtering algorithms to acoustic applications
becomes unpractical. In order to address this problem, in the last years it has
been conceived to act on the nature of AIRs. In fact, for both network and
acoustic scenarios, echo path have a specific property, which can be used in
order to help the adaptation process. Indeed, these systems are sparse in
nature, i.e., only a small percentage of the impulse response components have
a significant magnitude while the rest are zero or small [40].

The “sparseness” character of the echo paths inspired the idea to “pro-
portionate” the algorithm behaviour, i.e., to update each coefficient of the
filter independently of the others, by adjusting the adaptation step size in
proportion to the magnitude of the estimated filter coefficient. In this manner,
the adaptation gain is “proportionately” redistributed among all the coeffi-
cients, emphasizing the large ones in order to speed up their convergence, and
consequently to increase the overall convergence rate. This means that the
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Fig. 5.1: A sparse acoustic impulse response.

region with higher energy of the sparse impulse response is adapted faster
than the tail of the AIR. An example of sparse AIR can be found in Fig. 5.1, in
which the difference between the early reflections and the tail of the AIR is
quite clear.

The first proportionate algorithm was proposed by Duttweiler [40]; he
defined the Proportionate NLMS Algorithm (PNLMS) algorithm, whose idea
was to make the step size of each tap proportional to current absolute value
of the estimated weight. PNLMS converges and tracks much faster than
the NLMS algorithm when the impulse response that we need to identify
is sparse. However, its behaviour degrades significantly when the impulse
response is dispersive. PNLMS++ algorithm [50] partially solves the above
mentioned problem by alternating the update process between NLMS and
PNLMS. PNLMS++ seems a little bit less sensitive to the assumption of a
sparse impulse response than PNLMS, so it is far from the optimal solution.
In [13], the improved PNLMS (IPNLMS) was proposed where each step size
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shows a better balance between the fixed step size of NLMS and the large
amount of proportionality in PNLMS. As a result, IPNLMS always converges
and tracks better than NLMS and PNLMS, no matter how sparse the impulse
response is.

Another filter that unevenly weights the adaptation of the different taps
of the filter is the EG± algorithm [71], based on the exponentiated gradient
adaptation. Nevertheless, it has been proved [14, 93] that IPNLMS is a very
good approximation of the EG± algorithm, while being more convenient from
a practical point of view. Unfortunately, as any other gradient-based adaptive
filter, IPNLMS is subject to some compromises due to the selection of its
parameters. As a matter of fact, a large step size results in faster convergence,
while the residual misalignment is reduced for small step sizes. Moreover, the
choice of the proportionality factor imposes a behaviour trade-off for channels
with different degrees of sparseness [13].

In order to achieve faster convergence for a wide range of echo paths, it
is possible to combine the ideas of proportionate algorithms with the general
affine projection algorithm (APA). In [48], it is shown that a robust proportionate
affine projection algorithm (PAPA) converge faster than NLMS and performs
significantly better even during a double-talk situation. Moreover, in [119],
it is proved that an improved PAPA (IPAPA) easily outperforms all the above
mentioned proportionate algorithms and its performance does not depend on
the type of the impulse response. Furthermore, the choice of a proper value
for the proportionate factor has no any significant impaction on the IPAPA
tracking properties comparing to the IPNLMS. Moreover, in the last years
proportionate APAs have been improved [64, 152, 149, 78] until coming to an
efficient proportionate APA [102], which takes into account the “history” of the
proportionate factors.

Proportionate algorithms improve adaptive filtering performance when
the AIR is sparse; however, even in proportionate algorithms some problems
may occur in the choice of the parameters. A key parameter in adaptive echo
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cancellation is the step size which governs the stability and the adaptation
speed of the filtering algorithm. The choice of the step size sets the trade-off
between convergence, tracking ability and steady state misalignment. In order
to achieve the best trade-off, several variable step size (VSS) algorithms have
been proposed [58, 80, 124, 99]. In general, classic algorithms assume an exact
modelling situation, i.e. the length of the adaptive filter is equal to the length
of the system that has to be modeled. Since echo paths are extremely long,
under-modelling situations, in which the length of the adaptive filter is shorter
than the length of the echo path, often occur in echo cancelling applications.
The residual echo due to the unmodelled part of the impulse response can be
viewed as additional noise, also named under-modelling noise, that affects
the performance of the algorithm. In [101], the under-modelling case has been
considered.

In this chapter, we derive a novel perspective on proportionate algorithms
and then we define a new block-based proportionate APA and a variation of
it based on the recursive update of the covariance matrix. Furthermore, we
investigate the introduction of a variable step size. The chapter is organized
as follows: in Section 5.2 a new framework for the derivation of proportionate
algorithms is derived. Section 5.3 introduces the derivation of algorithms
using the new framework while the analytical description of the proposed
proportionate block APA is introduced in Section 5.4. In Section 5.5, variable step
size based proportionate algorithms are investigated.

5.2 AN ALTERNATIVE PERSPECTIVE ON
PROPORTIONATE ADAPTIVE FILTERS

In order to give an overall description of the proportionate algorithms, we
derive a general framework based on a novel perspective on the proportionate
algorithms using a natural gradient adaptive rule [2] and employing the least
perturbation property [120] by means of which we suggest the family of
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proportionate APA filters.

5.2.1 General properties of adaptive algorithms

Adaptive algorithms are usually introduced as an approximate iterative
solution of a global optimization problem as they are derived, in the steepest
descent implementation, by replacing the actual gradient vector with an in-
stantaneous approximation of it (see Section 4.3). It turns out that, starting
from an energy point of view and some general properties of the adaptive
algorithms, it is possible to define a class of algorithms that can be seen as an
exact, i.e. non-approximate, solution of a local optimization problem [120].

For this purpose, let us consider the regression vector dn ∈ RK containing
the K more recent samples of the observed desired signal:

dn =
[
d [n] d [n− 1] . . . d [n−K + 1]

]T
(5.1)

where K is known as projection order (see Section 4.4). Similarly, the data
matrix of the input signal Xn ∈ RK×M can be expressed as:

Xn =




xT
n

xT
n−1

· · ·
xT
n−K+1




T

(5.2)

=




x [n] x [n− 1] · · · x [n−M + 1]

x [n− 1] x [n− 2] · · · x [n−M ]
...

...
. . .

...
x [n−K + 1] x [n−K] · · · x [n−K −M + 2]




Moreover, let us assume to dispose, at n-th time instant, of some weight
estimate of the previous iteration, wn−1, so that it is possible to define the a
priori error signal:
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en = dn −Xnwn−1, (5.3)

and the a posteriori error signal:

εn = dn −Xnwn. (5.4)

Introducing the step size parameter µ [n] in its general time-varying form
and denoting with αn ∈ RK = diag (µ0 [n] , . . . , µK−1 [n]) the corresponding
diagonal matrix, it is possible to write the relation between the a posteriori and
the a priori error signals:

εn = (I−αn) en (5.5)

It can be notice that in case of constant step size value the diagonal matrix can
be written omitting the time index as α = µI, where µ is the fixed step size
value.

The relation (5.5), in which 0 < αn < I, expresses an energy constraint
between a priori and a posteriori errors, thus entailing the passivity of the
corresponding adaptive circuit scheme.

Taking into account equation (5.5) and denoting with:

w̃n = wn −wn−1 (5.6)

the vector that adjust the coefficients of the estimated filter, we can define a
cost function as:

J (wn) = ‖w̃n‖22 (5.7)

Due to the fact that the filter weights at steady state no longer change
during adaptation, it follows that any adaptive algorithm that minimized
J (wn) can be expressed as an exact method of local minimization, which is a
constrained optimization problem:
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wopt = argmin
wn

‖w̃n‖22

subject to εn = (I−αn) en

(5.8)

Such optimization problem describes the steepest descent adaptation process.
This process continues iteratively until the value of J (wn) reaches a suitably-
small value; at that point wn is close to wopt. With a proper selection of µ [n],
the steepest descent method adjusts wn in a way that lim

n→∞
wn = wopt. Such

an algorithm allows wn to converge to wopt.
Equation (5.8) represents the so-called least perturbation property and it is

equivalent to seek a solution wn that is closest to wn−1 in the Euclidean norm
sense, under an equality constraint between en and εn. The constraint is most
relevant when µ [n] is a small value, such that (I−αn) < I, because, when the
step size µ [n] is small enough, the magnitude of the a posteriori error εn will
always be less than that of the a priori error en, i.e.:

|εn| < |en| (5.9)

An important consequence of the least perturbation property is that a priori
and a posteriori errors tend to zero at steady state. In other words, as explained
in [71], an adaptive algorithm should be characterized by a reasonable balance
between the conservative (keep information gained in previous iterations) and
corrective requirements (ensure that any new information gained increases
the result accuracy).

Therefore, in conclusion, any adaptive algorithm can be derived and char-
acterized taking into account the following general properties:

(a) the magnitude of the a posteriori error is always less than the a priori error,
i.e. |εn| < |en|;

(b) at steady state, for n → ∞, the weights no longer change during adapta-
tion (least perturbation property);
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(c) at steady state, for n → ∞, a priori and a posteriori errors tend to zero.

5.2.2 Natural gradient adaptation

In order to take advantage from these properties, instead of the steepest de-
scent method we may adopt a different procedure to construct the coefficient
updates that takes into account the “non-isotropic nature” of the parame-
ter space. Natural gradient adaptation [2], [37] is a modified gradient search
that changes the standard gradient update procedure according to the non-
Euclidean nature of the parameter space [51]. The resulting updates are based
on a “non-straight-line” distance metric that is defined by the Riemannian
geometry of the parameter space [3], [3]. According to the natural gradient
procedure, the cost function in (5.7) can be rewritten as:

J (wn) = ‖w̃n‖2Gn

= w̃T
nGnw̃n

(5.10)

where Gn ∈ RM×M is a Riemannian metric tensor, which is a positive-definite
matrix, whose entries at n-th time instant depend on the coefficients of the filter
at time instant n− 1. The Riemannian metric tensor characterizes the intrinsic
curvature of a particular manifold in M -dimensional space. In the case of the
Euclidean space the Riemannian tensor is the identity matrix Gn = I, such
that (5.10) reduces to (5.7).

Before recasting the least perturbation property with the use of the Rie-
mannian metric tensor, let us consider the following aspect. The formalization
in (5.8) of the least perturbation property has merely theoretical significance
as it is based on the knowledge of a priori and a posteriori errors. For a more
constructive use of the general properties (a)-(c), it is necessary to define the
energy constraint as function of the only a priori error. Left multiplying both
sides of (5.6) with GnXn and then adding and subtracting the desired signal
vector dn defined in (5.1), it is possible to express the energy constraint in (5.5)
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just as a function of the a priori error. That is:

GnXnw̃n = GnXnwn −GnXnwn−1

= Gn [− (dn −Xnwn) + (dn −Xnwn−1)]

= Gn (−εn + en)

= Gnαnen.

(5.11)

Hence, we can formally rewrite the least perturbation property (5.8) as:

wopt = argmin
wn

‖w̃n‖2Gn

subject to GnXnw̃n = Gnαnen.
(5.12)

The update equation can be straightly derived solving the system relative to
the constraint (5.11). Thus, it results:

w̃n = (GnXn)
#αnen (5.13)

where (GnXn)
# is a pseudo-inverse matrix. Expliciting w̃n we can write:

wn −wn−1 = (GnXn)
T (

XnGnX
T
n

)−1
αnen. (5.14)

Inserting the regularization parameter δ, we achieve the general update equa-
tion of the family of normalized natural gradient (NNG) algorithms:

wn = wn−1 + (GnXn)
T (

δI+XnGnX
T
n

)−1
αnen. (5.15)

In case of Euclidean space, when Gn = I, for a unitary projection order, i.e.
K = 1, and a fixed step size, i.e. each diagonal element of α is equal to a fixed
scalar value µ, the update equation (5.15) describes the normalized least mean
square (NLMS) algorithm:
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wn = wn−1 + µ
xne [n]

xT
nxn + δNLMS

(5.16)

On the other hand, when the projection order is K > 1, equation (5.15) yields
the affine projection algorithm (APA) in its standard form [98] in case of Eu-
clidean space, or the natural APA (NAPA) [65], in case of Riemannian space.

5.3 DERIVATION OF PROPORTIONATE
ALGORITHMS

Starting from equation (5.15), it is possible to derive a complete formulation
of the class of proportionate algorithms. Different proportionate algorithms
can be obtained simply changing the projection order K and the Riemannian
tensor Gn. In particular, in proportionate algorithms, the Riemannian tensor is
consider as a full-blown sparseness constraint which weight the input signal;
this is why Gn is called proportionate matrix.

The simplest proportionate algorithm is the proportionate normalized least
mean squares in its improved version (IPNLMS) [13], whose derivation can
be achieved choosing a unitary projection order K = 1 and a diagonal pro-
portionate matrix Gn ∈ RM×M built up in order to adjust the step sizes of
the individual taps of the filter in a way that each step size turns out to be
proportional to the corresponding filter coefficient:

Gn = diag {g0 [n] , . . . , gM−1 [n]} (5.17)

The diagonal elements at n-th time instant are computed from the estimate
of the filter coefficients at time instant n − 1 in such a way that a larger
coefficient receives a larger increment, thus increasing the convergence rate
of the coefficient. The result is that active coefficients are adjusted faster than
non-active coefficients. Hence, proportionate algorithms converge much faster
than classic algorithms for sparse impulse responses.
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The choice of diagonal elements differentiates proportionate NLMS algo-
rithms proposed in literature [40, 50, 13]. However, the most efficient choice,
which exploits the “proportionate” idea better than other PNLMS algorithms,
is the one proposed in the IPNLMS [13]. According to that, diagonal elements
are:

gl [n] =
1− αp

2M
+ (1 + αp)

|wl [n− 1]|
2 ‖wn−1‖1 + ξ

(5.18)

where:

‖wn−1‖1 =
M−1∑
l=0

|wl [n− 1]| (5.19)

In (5.18), the coefficient index l = 0, . . . ,M − 1 and ξ is a small positive
number which avoids divisions by zero; the proportionality factor αp balances
the proportionality and its recommended value is 0 or −0.5 [13]. For αp = −1,
the IPNLMS is equal to NLMS. For αp close to 1, the IPNLMS behaves like the
PNLMS. The regularization parameter δp in IPNLMS is chosen as:

δp =
1− αp

2M
δNLMS. (5.20)

Similarly to the development of PNLMS and IPNLMS, if we consider a pro-
jection order K > 1, we can derive the proportionate affine projection algorithm
(PAPA) [48] and the improved PAPA (IPAPA) [64, 119]. However, we describe
an efficient version of proportionate APA which considers the “history” of the
proportionate factors [102]. Besides the projection order, the relevant differ-
ence of the proportionate APA compared to IPNLMS is the construction of Gn.
In fact, the proportionate matrix for K > 1 can be built up as a rectangular
matrix, that we denote as G′

n ∈ RK×M to distinguish from (5.17), in which
the first row contains the proportionate weight computed at n-th time instant,
gn ∈ RM =

[
g0 [n] . . . gM−1 [n]

]
, while the other K − 1 rows contain the

previous K − 1 realizations of gn:
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G′
n =




gT
n

gT
n−1

· · ·
gT
n−K+1



. (5.21)

The matrix product in (5.15) can be written in this case as a Hadamard product:

Γn = G′
n �Xn

=




gT
n � xT

n

gT
n−1 � xT

n−1

· · ·
gT
n−K+1 � xT

n−K+1




(5.22)

where the operator � denotes the Hadamard product, i.e. a � b = [a0b0

a1b1 . . . aM−1bM−1

]T
, being a and b two vectors of length M . Therefore,

using (5.22), the update equation of (5.15) can be rewritten in case of PAPA
algorithms as:

wn = wn−1 +αΓT
n

(
δpI+ ΓnX

T
n

)−1
en. (5.23)

Due to the fact that equation (5.21) takes into account the past K−1 realization
of the proportionate elements, the PAPA described in (5.23) can be considered
as an efficient algorithm since this “proportionate memory” increases its
performance [102].

Another advantage of the PAPA in (5.23) is the lower computational
complexity compared with the classical proportionate-type APA, such as
[48, 64, 119]. This is because the matrix Γn in (5.22) can be realized recursively,
since it contains K − 1 rows, whose products are computed in previous itera-
tions. Thus, the rows from 1 to K − 1 of the matrix Γn−1 can be used directly
for computing the matrix Γn, i.e. they become the rows from 2 to K of Γn.
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5.4. Proportionate block APA

This is not the case of the classical proportionate-type APA, where all the rows
of Γn have to be evaluated at each iteration, because all of them are multiplied
with the same vector gn. Concluding, the evaluation of Γn in the classical
proportionate APAs needs KM multiplications, while the evaluation of Γn

from (5.22), i.e. considering the “proportionate memory”, requires only M

multiplications. This advantage becomes more apparent when the projection
order increases. Moreover, the fact that Γn has the time-shift property, like the
data matrix Xn, could be a possible opportunity to establish a link with the
fast APA [52, 140]. It is also likely possible to derive efficient ways to compute
the linear system involved in (5.23). This point in particular will address in
the next section.

5.4 PROPORTIONATE BLOCK APA

In this section we propose a variation of the PAPA described in (5.23) based
on the block processing of the input signal [141, 11, 1, 115]. Block processing
is an effective approach to reduce the computational complexity, however in
proportionate case it may assume a further sense due to the time-shift prop-
erties of the proportionate input matrix. In fact, in sample-by-sample PAPA
the time-shift property of the input matrix is the same of the proportionate
matrix allowing a computational saving; however, in proportionate block APA
(PBAPA), the proportionate matrix is still subjected to the same shifting of
PAPA, while the input matrix is subjected to a shift equal to the length of block.
This may initially appear as a drawback since at each iteration the whole data
matrix has to be weighted by the whole proportionate matrix, thus loosing
the computational advantage of PAPA. Moreover, PBAPA may show a slower
convergence rate due to less frequent updating of the adaptive filter. However,
choosing a block length equal to the projection order, the computation cost
remains the same of PAPA due to the fact that the block processing requires
1/K of the iterations compared to PAPA, thus the computational cost results
KM/K = M . Moreover, the different time-shifting properties of Xn and
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Gn can be seen as an interpolation of the proportionate weighting over input
blocks, and this may improve the steady-state behaviour of the filter compared
to PAPA.

The update equation of PBAPA is similar to (5.23); however, at each iter-
ation the input data matrix (5.2) does not receive just a sample but a block
of K samples. Moreover, a further correction term can be introduced to nar-
row the convergence gap with the sample-by-sample PAPA and to develop a
fast version of PBAPA. In addition, it can be also possible to derive efficient
ways to compute the inversion of the covariance matrix by means of recursive
techniques, following what done in [141, 134].

5.5 VARIABLE STEP SIZE PROPORTIONATE
ALGORITHMS

The overall performance of proportionate algorithms is governed by the
step size parameter, which controls the filter trade-off between convergence,
tracking ability and steady state misalignment. A constant value of the step
size can set a priori performance compromise, however, it is not an optimal
solution and in many cases it can produce not satisfying performance. In
particular, this may occur in acoustic applications, in which nonstationary
signals, such as speech, may alter initial conditions. In order to address
this compromise, a variable step size (VSS) may be adopted. Therefore, even
for proportionate algorithms, a performance improvement may be expected
using a variable step size. Considering a variable step size, each element
of the diagonal matrix αn in (5.15) may be different from the others, being
time-varying.

In this section we derive the overall formulation of VSS-based propor-
tionate algorithms, starting from equation (5.15), from which it is possible
to derive the VSS-IPNLMS or the VSS-PAPA in its several versions. We gen-
eralize the proportionate algorithms in order to achieve a better robustness
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also in nonstationary conditions, double-talk events, path changes and under-
modelling situations of the impulse response. For this purpose we introduce
the generalized variable step size proportionate algorithm for under-modelling scenar-
ios.

Under-modelling situations occur when the length of the adaptive filter is
shorter than the length of the echo path, and this is often the rule in acoustic
applications where AIRs are extremely long for a real-time adaptation. Under-
modelling an AIR may introduce an additional noise to the near-end signal,
generated by the part of the system that cannot be modelled. The power of
the under-modelling noise cannot be estimated in a direct way due to the fact
that it is not available in a real scenario. Therefore, its contribution cannot be
evaluated.

Denoting with MA the length of the acoustic impulse response w0, let us
consider an under-modelling situation in which M < MA; it is possible to
break up the data input matrix in the following way:

XUM,n =
[
Xn XA,n

]
(5.24)

where Xn is defined as (5.2), and XA,n ∈ RK×(MA−M) is the data matrix
referred to the under-modelled part of the AIR:

XA,n =




xT
A,n

xT
A,n−1

· · ·
xT

A,n−K+1




T

(5.25)

=




x [n−M ] x [n−M − 1] · · · x [n−MA + 1]

x [n−M − 1] x [n−M − 2] · · · x [n−MA]
...

...
. . .

...
x [n−M −K + 1] x [n−M −K] · · · x [n−K −MA + 2]
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Similarly, in an under-modelling scenario, we can split the AIR in two parts, a
modelled part and an unmodelled one:

w0,UM =
[
w0 w0,A

]
(5.26)

where:

w0 =
[
w0,0 w0,1 . . . w0,M−1

]
(5.27)

and:

w0A =
[
w0,M w0,M+1 . . . w0,MA−1

]
. (5.28)

Let us note that the AIR vectors do not have any time index since they are
assumed to be time invariant.

As a consequence, taking into account K subsequent realizations, the
resulting echo path in under-modelling case, that we denote as xUM,n ∈ RK ,
can be decomposed in a modelled term xn and an unmodelled term xA,n,
which represents the under-modelling noise:

xUM,n = xn + xA,n

= Xnw0 +XA,nw0A

(5.29)

The term xA,n acts like an additional noise for the adaptive process, so that the
desired signal in under-modelling case can be rewritten as:

dUM,n = xn + xA,n + qn (5.30)

where qn is the near-end contribution which can be composed of a near-end
speech signal sn and a near-end background noise vn. In (5.30) we assume that
xn and xA,n are uncorrelated. Now, squaring and then taking the expectations
of both sides of (5.30) results in:
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E
{
d2

UM,n

}
= E

{
x2
n

}
+ E

{
x2

A,n

}
+ E

{
q2
n

}
(5.31)

Moreover, according to the least perturbation property (5.8), we assume that
filter coefficients converge at steady-state, thus:

E
{
x2
n

}
≈ E

{
y2
n

}
(5.32)

where yn = Xnwn−1 is adaptive filter output signal. As a consequence,

E
{
x2

A,n

}
+ E

{
q2
n

}
= E

{
d2

UM,n

}
− E

{
y2
n

}
. (5.33)

Moreover, it is possible to assume that at steady-state the noise contributions
converge to the a posteriori error, defined in (5.4), so taking into account the
energy relation (5.5) it is possible to write:

E
{
x2

A,n

}
+ E

{
q2
n

}
≈ E

{
ε2n

}

= (I−αn) E
{
e2n

}
.

(5.34)

Therefore, replacing (5.34) in (5.33), it is possible to derive an expression of
the variable step size parameter vector:

αn = I−

√
E
{
d2

UM,n

}
− E {y2

n}
E {e2n}

. (5.35)

From a practical point of view, we evaluate the expectations in terms of power
estimates, thus each diagonal element of αn can be written as:

µl [n] =

∣∣∣∣∣∣
1−

√∣∣σ̂2
d [n− l]− σ̂2

y [n− l]
∣∣

σ̂2
e [n− l] + ζ

∣∣∣∣∣∣
(5.36)

where l = 0, . . . ,K−1. Let us note that in order to make the reading clearer, in
(5.36) and in the following we omit the subscript “UM” for the desired signal.
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The general parameter σ̂2
θ [n] represents the power estimate of the sequence

θ [n], considering θ = {d, y, e} and can be computed as:

σ̂2
θ [n] = βσ̂2

θ [n− 1] + (1− β) θ2 [n] (5.37)

where β is a forgetting factor chosen as β = 1 − 1/ (QM), with Q > 1. The
initial value is σ̂2

θ [0] = 0. Furthermore, a small positive number ζ should be
added in (5.37) to avoid division by zero. In order to satisfy the steady-state
approximation (5.34), as suggested in [101], the process starts using a fixed step
size value for the first M iterations when the estimate of the coefficients may be
influenced only by the system noise v [n]. However, even if we do not consider
this “trick”, the experimental results will prove that performance degradation
is not very significant, especially when the value of the projection order is
increased [100]. Another practical consideration is that the computation of the
power estimates in (5.36) could lead to minor deviations from the previous
theoretical conditions; this is the reason why in (5.36) we consider the absolute
value of the step size parameter. Nevertheless, when echo path changes occur,
the power of the estimate of the echo signal σ̂2

y [n] may be larger than the
power of the desired signal σ̂2

d [n]. This is the reason why, in order to avoid
complex values, in (5.36) we take also the absolute value of the difference
under the square root.
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