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THE objective of this chapter is to present by means of simulations the
most important features of the proportionate adaptive algorithms
described in the previous chapter. In particular, we analyzed the

behaviour of those algorithms in several conditions and we investigate the
performance of the proposed variations in order to give an overall description
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6.1. AEC experimental conditions
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Fig. 6.1: Acoustic impulse responses used in simulations. (a) Real AIR measured in a low
reverberant room. (b) Simulated AIR with a reverberation time of 130 ms.

of the effectiveness of proportionate algorithms. Most of the experiments
are conducted in acoustic echo cancellation scenarios, which allows to better
comprehend the capabilities of the algorithms.

6.1 AEC EXPERIMENTAL CONDITIONS

In this first part of the chapter we show experiments conducted in the
context of echo cancellation since it is the best acoustic application to evaluate
the effectiveness of an adaptive algorithm.

Experimental simulations in an exact modelling case were performed
using a real echo path measured using a low-cost loudspeaker inside a room
with short reverberation time. This AIR is composed of 320 coefficients and
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it is depicted in Fig. 6.1 (a). When we have considered an under-modelling
scenario, experiments have been conducted using a different AIR, simulated
by means of a Matlab tool, Roomsim [24], and is measured by using an 8
kHz sampling rate. This simulated AIR has been achieved considering a
(10× 6, 6× 3) m room with a reverberation time of T60 ≈ 130 ms. It consists
of 1024 coefficients; however when we consider an under-modelling filter we
truncate it after the first 512 coefficients. The simulated AIR is depicted in its
total length in Fig. 6.1 (b).

The far-end signal, i.e. the input signal, is either a white Gaussian noise
signal or a female speech signal. The output of the echo path is corrupted by an
independent white Gaussian noise (which simulates the near-end background
noise) providing a signal-to-noise ratio (SNR) of 20 dB. All the signals are
evaluated over a length of 10 seconds. Most of the simulations are conducted
in a single-talk case, i.e. in absence of near-end speech input; however, we
also use a double-talk scenario to evaluate VSS-based algorithms.

In addition, we want to prove the effectiveness of the algorithms even in
adverse environment conditions, in which the acoustic environment changes
due to a nonstationary source or to an alteration in the environmental condi-
tions. In order to introduce an abrupt change in the acoustic environment we
shift the AIR circularly to the right by 20 samples, 5 seconds after the start of
the adaptive process.

In order to have a fair comparison we use, where possible, the same
parameter setting for all the algorithms. Performance are evaluated in terms of
normalized misalignment and in many cases also in terms of ERLE (see Section
3.4).
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6.2. Performance advantages of proportionate filters

6.2 PERFORMANCE ADVANTAGES OF
PROPORTIONATE FILTERS

6.2.1 Simplest scenario: exact path modelling in absence of near-
end speech

In the first set of experiments, we evaluate the performance of proportion-
ate algorithms with respect to the correspondent classic ones. We start our
analysis taking into account the simplest algorithms (having unitary projection
order) introduced in Chapter 5, i.e. the normalized least mean squares (NLMS)
(5.16) and its proportionate version that we denote as IPNLMS, as its original
indication [13]. We consider an exact modelling scenario in absence of near-
end speech; the AIR used for these simulations is the one represented in Fig.
6.1 (a). We use the same parameter setting for both the algorithms: a step size
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Fig. 6.2: Misalignment of NLMS and IPNLMS algorithms with a white Gaussian noise
input.
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value µ = 0.2 and a proportionality factor of α = 0; in addition, we choose a
regularization parameter of δNLMS = 30σ2

x for the NLMS, where σ2
x is the input

signal variance, and a regularization parameter for IPNLMS δp according to
(5.20). When the far-end signal is white Gaussian noise it is simple to certify a
performance improvement of IPNLMS compared to NLMS in terms of con-
vergence rate, as it is possible to see from the behaviour of the normalized
misalignment in Fig. 6.2. The difference between NLMS and IPNLMS is more
evident when the far-end signal is a speech input. Performance of IPNLMS
are clearly improved in terms of filter misalignment, depicted in Fig. 6.3;
moreover, an evident advantage results in the quantity of cancelled echo, i.e.
in terms of ERLE, as it is possible to see in Fig. 6.4.

In Fig. 6.5 we evaluate the misalignment performance of a selection of
PAPA algorithms with different projection order in case of speech input.
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Fig. 6.3: Misalignment of NLMS and IPNLMS algorithms with a female speech input.
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Fig. 6.4: ERLE of NLMS and IPNLMS algorithms with a female speech input. The speech
signal is reported for clearness.
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Fig. 6.5: Misalignment comparison of PAPA algorithms with different projection order in
case of female speech input.
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Let us note that in this case we evaluate only the speech input since the
whitening capabilities of APA algorithms are obviously not evident when the
input signal is already a white signal. From Fig. 6.5 we gather that satisfactory
results can be obtained with a projection order equal to K = 2, or K = 3 at
most.

We have also investigated the behaviour of the PBAPA (see Section 5.4).
We report the comparison between PAPA and PBAPA in Fig. 6.6 in terms of
filter misalignment when the input signal is speech. For both the algorithms
we use a projection order of K = 2.

The behaviour of PBAPA misalignment confirms as said in Section 5.4:
due to its structure the PBAPA overcomes PAPA misalignment at steady-state
while showing poorer convergence performance. Due to this result we can say
that PBAPA could be suited for applications with quite stationary conditions;
however, if we consider AEC scenarios with adverse environment conditions
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Fig. 6.6: Misalignment comparison between PAPA and PBAPA algorithms.

85



6.2. Performance advantages of proportionate filters

we still prefer the PAPA.

6.2.2 Exact modelling scenario in adverse environment

In this set of experiments we consider worse environment conditions re-
spect to experiments conducted in the previous section. In a real AEC scenario
several factors can be involved, thus altering the environment conditions,
a source position change rather than an alteration of the environment tem-
perature or the sudden presence of a new interfering source. When such
an alteration occurs, the filter has to be readapted, so in order to achieve
performance improvements an adaptive algorithm must have good tracking
capabilities, i.e. a faster convergence rate in readapting.

We repeat some of the previous most representative experiments only
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Fig. 6.7: Misalignment comparison between NLMS and IPNLMS algorithms when a path
change occurs. The far-end input is a female speech signal.
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Fig. 6.8: ERLE of NLMS and IPNLMS algorithms with a female speech input. The AIR
changes at fifth second.

changing the environment conditions, and in particular introducing a path
change, due to an alteration in the environment, which occurs 5 seconds after
the start of the adaptive process. In case of speech input it is possible to see
in Fig. 6.7 that misalignment performance improvement of IPNLMS results
more evident in adverse environment conditions compared to the simpler
scenario in Fig 6.3. Comparing Fig. 6.4 and Fig. 6.8, when a path change
occurs improvements even increase in terms of ERLE, since the behaviour of
IPNLMS always keeps an advantage margin with respect to NLMS. It can be
notice in Fig. 6.8 that the ERLE improvement (in dB) is directly proportional
to the convergence rate; in fact, just after seconds 0 and 5, i.e. in transient
state, the ERLE improvement is small due to a filter adaptation, while a larger
improvement is achieved in steady-state, i.e. in time intervals 1.5 − 5 and
6.5− 10 seconds.

87



6.3. Performance analysis of VSS proportionate filters

0 1 2 3 4 5 6 7 8 9 10−35

−30

−25

−20

−15

−10

−5

0

5

Time [seconds]

N
or

m
al

iz
ed

 M
is

al
ig

nm
en

t [
dB

]

APA
PAPA
PBAPA

Fig. 6.9: Misalignment comparison between PAPA and PBAPA algorithms with a white
Gaussian noise input when the echo path changes. PBAPA shows better performance in
steady-state; however, its tracking performance is poorer compared to IPAPA.

We also investigates the behaviour of PAPA algorithms, including the
PBAPA, when the echo path changes. Misalignment performance, depicted
in Fig. 6.9, confirms the analysis done in the previous subsection, i.e. the
PBAPBA provides the best steady-state behaviour while the PAPA shows the
best tracking performance.

6.3 PERFORMANCE ANALYSIS OF
VSS PROPORTIONATE FILTERS

Variable step size algorithms can bring significant improvement according
to the environment conditions. In fact, due to their nature, VSS algorithms
provides tracking performance improvements [124, 99] and this is the reason
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why VSS algorithms are well suited for AEC scenarios with adverse environ-
ment conditions and in presence of double talk. Moreover, VSS algorithms do
not suffer from any under-modelling noise (see Section 5.5) and this allows to
estimate the AIR with shorter length than the exact AIR length.

The variable step size approach introduced in Section 5.5 can be applied to
any proportionate algorithm; however, for a performance analysis purpose
we evaluate the behaviour of VSS-PAPA with a projection order of K = 2. For
the set of experiments conducted in this section we use the AIR simulated in
typical office room and depicted in Fig. 6.1 (b), whose length is MA = 1024.

6.3.1 Under-modelling the acoustic impulse response

In case of exact modelling scenario we set the filter length M = MA while in
under-modelling scenario we halve the exact length, so M = 512. In addition,
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Fig. 6.10: Misalignment comparison between PAPA and VSS-PAPA algorithms with a white
Gaussian noise input. Both algorithms are evaluated in either an exact and an under-modelling
scenario.
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Fig. 6.11: Misalignment comparison between PAPA and VSS-PAPA algorithms with a female
input. The PAPA is evaluated in exact modelling while the VSS-PAPA in under-modelling.

for the computation of the forgetting factor β in (5.37) we choose Q = 6 for
white Gaussian noise input and Q = 20 for speech input.

In Fig. 6.10 we compare the misalignment performance of PAPA and its
VSS version both in exact modelling and under-modelling scenarios using a
white Gaussian noise input. It can be notice that even with a strong under-
modelling of the AIR the VSS-PAPA achieves better performance compared
to PAPAs. In Fig. 6.11 the misalignment comparison is reported in case of
speech input using an exact modelling PAPA filter and an under-modelling
VSS-PAPA filter; also in this case the VSS-PAPA still outperforms the PAPA.
On the other side, not significant improvement is obtained in terms of ERLE,
as depicted in Fig. 6.12, however, for an equivalent ERLE the misalignment
improvement still represents an advantage since it implies a higher quality of
the processed signal in perceptive terms.
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Fig. 6.12: ERLE comparison between PAPA and VSS-PAPA algorithms with a female input.
The PAPA is evaluated in exact modelling while the VSS-PAPA in under-modelling.

6.3.2 Robustness against double talk

Another situation in which the VSS algorithms result effective is in pres-
ence of double talk, i.e. when a near-end speech is present and is superimposed
over the echo path. In fact in this case it results very difficult to cancel the
echo contribution without eating away at near-end speech. The performance
of an echo canceller during double talk is an important measurement because
near-end speech often causes divergence, especially at high convergence rate.
In order to solve this problem a double talk detector (DTD) is usually adopted
[57], which stops the filter adaptation in presence of double talk in order to pre-
serve the near-end speech. A DTD is a good method to meet the contradictory
requirement of low divergence rate and fast convergence in echo cancellation.

DTDs can mostly be classified into energy-based or correlation-based
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6.3. Performance analysis of VSS proportionate filters

techniques. The most popular representative of energy-based DTDs is the
Geigel algorithm [39]. It is based on an observation that the energy of echo
is typically much smaller than the energy of far-end speech. Therefore, if
the near-end speech is present, the energy of the desired signal increases.
The Geigel DTD detects the near-end signals by comparing the magnitude
of current far-end sample and the maximum magnitude of the recent past
samples of the near-end signals, which means declaring double talk when:

|d [n]| = τ max {|x [n]| , . . . , |x [n−M + 1]|} (6.1)

The parameter τ is a threshold usually set to 0.5 based on the assumption
of 6 dB hybrid attenuation. Once the double talk is declared, the updates is
inhibited for some hangover time in order to reduce the miss of detection.
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Fig. 6.13: Misalignment comparison between APA, PAPA and VSS-PAPA algorithms in
presence of double talk. APA and PAPA use a Geigel DTD, unlike the VSS-PAPA, which also
considers an under-modelling of the AIR. The near-end speech is reported for clearness.
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Fig. 6.14: Misalignment comparison between VSS-PAPA algorithms with and without a
DTD in presence of double talk. In both the cases an under-modelling of the AIR is considered.
The near-end speech and the double talk detections are reported for clearness.

However, a DTD is not always a good solution and often it is necessary a
strong DTD to preserve the intelligibility of the near-end speech. The strength
of the VSS is that it is able to govern the adaptation when a double talk occur,
so there is no further need of using any DTD.

Here we consider the same scenario of the previous set of experiments
just adding a near-end speech contribution in the time interval 4− 6 seconds
in order to simulate a double talk situation. We compare APA, PAPA and
VSS-PAPA algorithms in presence of double talk. For APA and PAPA, we use
a Geigel DTD with τ = 0.5 and a hangover time equal to 200 samples; on the
other side, we use a VSS-PAPA without any DTD and moreover in an under-
modelling of the AIR. In Fig. 6.13 it is possible to see that, despite VSS-PAPA
is without DTD, it achieves the best misalignment performance compared to
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other algorithms. In Fig. 6.14, it is possible to verify that a VSS-PAPA without
DTD achieves almost the same performance of a VSS-PAPA with DTD, or
rather better performance due to the fact that sometimes the DTD may detect
a false alarm, so the algorithm stops the adaptation when it should not.
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