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8.1. Introduction
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THIS chapter introduces a new class of nonlinear filters, whose struc-
ture is based on Hammerstein model. The functional link adaptive
filters (FLAF) are defined by a nonlinear input expansion, which en-

hances the representation of the input signal through a projection in a higher
dimensional space, and a subsequent linear filtering. The most important ele-
ment of a functional link adaptive filter is the nonlinear expansion, in which
the a set of functional links processes the input signal allowing an enhanced
modelling of nonlinearities. The functional expansion block allows to design
a suitable filter according to scopes and field of application. This flexibil-
ity enables the filter to find the optimal trade-off between performance and
computational complexity, according to the specifications of the problem.

8.1 INTRODUCTION

The problem of modelling linear systems has been widely tackled in last
decades [116, 69] and, nowadays, it may be considered definitely solved. A
linear system can be considered as a white box, since all information necessary
to describe the system is available. Therefore, an effective estimate of the
impulse response of a linear system may be achieved by using linear adaptive
filtering algorithms [120, 59]. However, real-world systems often involve some
degree of nonlinearity. In particular, if a system introduces a weak degree of
nonlinearity it can be considered as a grey box, since, although information
concerning the system is not entirely known, a linear approximation may be
adopted. However, if a system shows a strong degree of nonlinearity it can be
considered as a black box, since no information concerning the system is a priori
available, thus a nonlinear system identification technique must be taken into
account [157].
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Chapter 8. FLAF: A NEW CLASS OF NONLINEAR FILTERS

A popular approach to the problem of nonlinear system identification is
the use of a cascade of a linear dynamic system and a memoryless nonlinear
function. This kind of model is known in literature as Wiener model [97, 157].
On the other side, a cascade of a memoryless nonlinear function and a linear
dynamic system is a very useful system in many practical applications and
it is known as Hammerstein model [97]. Among the several other solutions
to nonlinear filtering problem, one of the most popular technique proposed
in literature is based on the so-called polynomial filters [86], which is a quite
general model for nonlinear filtering. In this kind of filters, the adaptive
nonlinearity consists in a polynomial-type nonlinearity: the filter output can
be evaluated from its input through a polynomial model, truncated to a
suitable order.

A particular case of polynomial filters is represented by Volterra filters
[150]. The Volterra model can be very effectiveness in many practical applica-
tions, however, as said in Section 7.1, its computational cost may be very huge
due the enormous number of coefficients required for higher-order kernels.

A more general framework for nonlinear filtering is provided by artificial
neural networks (ANNs) [60], which represent an easily and flexible way to im-
plement a such nonlinear filtering. The nonlinear transformations, applied by
each neuron of an ANN, realize the searched nonlinearity. ANNs are capable
of generating complex mapping between input and output space, therefore,
arbitrarily complex nonlinear decision boundaries can be approximated by
these networks. A drawback of this approach is the high computational cost
of such a network. A particular type of ANN with reduced computational cost
is characterized by activation functions implemented as flexible spline nonlinear
functions, which are piecewise polynomials [148, 55, 129]. The term spline, in
fact, comes from the flexible spline devices used by drafters to draw smooth
shapes. Such networks, due to the adaptability of their activation functions,
can solve hard problems with a low number of neurons [114].

In this chapter, we propose a novel nonlinear adaptive filtering model
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8.2. Nonlinear system identification problem

based on functional links. The functional link is a functional operator which
allows to represent an input pattern in a feature space where its processing
turns out to be enhanced. The functional links have been initially proposed by
Pao [103] with the aim of developing a class of single-layer feedforward neural
networks, known as functional link artificial neural networks (FLANNs). Pao has
shown that FLANN may be conveniently used for function approximation
and pattern recognition with faster convergence rate and lesser computational
load than a multi-layer perceptron (MLP) ANN [103]. The FLANN is basically
a flat net and the removal of the hidden layer allows a very simple use of
the backpropagation learning algorithm [103, 60]. Functional links have been
used for many applications, ranging from pattern recognition [104] to process
control [128].

In this research study we develop a novel nonlinear model based on
functional links that is not built on an ANN but on an adaptive filter structure.
Such model, named functional link adaptive filter (FLAF), exploits the nonlinear
modelling capabilities of functional links and the filtering properties of linear
adaptive algorithms, which are definitely less computationally expensive than
ANNs, thus resulting an effective tool to model nonlinearities (especially) in
acoustic applications.

8.2 NONLINEAR SYSTEM IDENTIFICATION
PROBLEM

Before describing the proposed nonlinear model, we briefly introduce a
problem formulation concerning the nonlinear system identification. It needs
to notice that the correspondent acoustic application of nonlinear system
identification is the nonlinear acoustic echo cancellation, that we address in
the next chapter.

A nonlinear system identification problem based on a Hammerstein model
is depicted in Fig. 8.1, in which it is possible to notice that the desired sig-
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Fig. 8.1: Hammerstein-based nonlinear system identification scheme.

nal d [n] results from the convolution between the input signal x [n] and the
unknown system to identify, denoted as:

wopt =
(
xT
nxn

)−1
xnd [n] (8.1)

as it is the optimal solution that solves the least-mean squares problem:

min
w

E
{∣∣d [n]− xT

nxn−1

∣∣2} . (8.2)

In a Hammerstein model the system to identify is preceded by a nonlinearity
which is a priori unknown and may only be approximated. Therefore the
identification of a Hammerstein model strictly depends on the nonlinearity
upstream the filter.

In Fig. 8.1 it is possible to notice that the signal x [n] is fed into a nonlinear
system, thus the input signal to the unknown system gets to be u [n] = f (u [n]).
Therefore the desired signal is:

d [n] = uT
nw

opt + v [n] (8.3)
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8.3. Functional Link Adaptive Filters

where v [n] is an additive noise, usually a white Gaussian noise with zero mean
and unitary variance, thus resulting independent and identically distributed
(i.i.d.). Consequently, the adaptive nonlinear filter, that aims at identifying the
unknown system, is composed of a linear adaptive algorithm preceded by an
artificial nonlinearity f̂ (·), which aims at approximating the nonlinearity of
the unknown system. Therefore, the nonlinear input to the linear adaptive
filter is denoted as g [n] = f̂ (x [n]).

The scheme depicted in Fig. 8.1 is generic for a system identification
problem based on a Hammerstein model; with some specific changes, it allows
to analyze a wide class of adaptive nonlinear filters based on Hammerstein
model and described by the following adaptation rule:

wn = wn−1 + µgnγ (e [n]) (8.4)

where γ (·) represents some function of the a priori output error signal:

e [n] = d [n]− gT
nwn−1. (8.5)

Therefore, the scope is to define a suitable nonlinear function f̂ (·), which
allows, through the update of an adaptive filter wn, to minimize the mean
square error.

8.3 FUNCTIONAL LINK ADAPTIVE FILTERS

8.3.1 Functional link approach

The main idea which underpins our FLAF approach is that of asking
whether it might be possible to enhance the original representation right from
the start in a linearly independent manner. A way of enhancing the original
input signal is to represent it in a space of higher dimension [103]. This
process derives directly from the machine learning theory, and more exactly
from Cover’s Theorem on the separability of patterns [60]. Size and nature of
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Fig. 8.2: The functional link adaptive filter.

the enhanced space are described by the functional links chosen to perform
the nonlinear filtering. The functional link adaptive filtering is carried out in
two stages: a nonlinear functional expansion of the input and a subsequent
linear filtering, as it is possible to see in Fig. 8.2.

At n-th time instant FLAF receives an input buffer xn ∈ RM = [x [n]

x [n− 1] . . . x [n−M + 1]
]T

, where M is the input buffer length; differ-
ently from the linear weighting carried out by a linear filter, FLAF processes
the input buffer by means of a functional expansion block (FEB). The FEB gener-
ates a series of linearly independent functions, which might be a subset of a
complete set of orthonormal basis functions, satisfying universal approxima-
tion constraints [34]. The term functional links actually refers to this series of
functions. The FEB processes the input buffer by passing each element of the
buffer as argument for the chosen functions. The described process results in
an expanded buffer gn, whose length is Me ≥ M . A deeper description of the
expansion process will be drawn in Subsection 8.3.2.
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8.3. Functional Link Adaptive Filters

In one sense, no new ad hoc information has been inserted into the pro-
cess; however, the representation of the original buffer has been definitely
expanded, and nonlinear modeling becomes possible in the expanded space.
Once achieved the expanded buffer, the functional link adaptive filtering pro-
cess is completed simply linearly filtering the expanded buffer. This aspect
is an important theoretical novelty, with respect to the original formulation
of functional links [103] and their recent use [162, 125], due to the significant
advantages that it provides to FLAF, as described in Subsection 8.3.4.

8.3.2 Nonlinear input expansion

The most important element of the FLAF is the FEB, whose processing
plays a leading role in the nonlinear modelling. The expansion process carried
out by the FEB is depicted in Fig. 8.3, where it is possible to see how the input
buffer xn is projected in a higher dimensional space yielding the expanded
buffer.

At n-th time instant, the i-th sample of the input buffer x [n− i], being
i = 0, 1, . . . ,M − 1, is expanded by means of a chosen set of functional links
Φ =

{
ϕ0 (·) ,ϕ1 (·) , . . . ,ϕQ−1 (·)

}
, where Q is the number of functional links

of the chosen set Φ.

The effectiveness of the FEB relies on two main feature of the chosen set of
functional links Φ. The first feature will be detailed in Section 8.4 and concerns
the nature of the expansion and, therefore, the choice of the functional links.
The second feature is the correspondence between the input and the output
samples of the FEB which can be characterized by the choice of taking into
account some memory of the input buffer. This feature will be described in
Section 8.5. The former feature depends on the kind of scenario of application
and on the nature of involved signals; on the other hand, the latter feature
depends on the nature of the input signal and, more specifically, on the kind
of distortion which affects the desired signal.
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8.3.3 FLAF learning algorithm

Once chosen the set of basis functions, the problem focuses on finding out
the coefficients of the FLAF weight vector wn ∈ RMe , defined as:

wn =
[
w0 [n] w1 [n] . . . wMe−1 [n]

]T
, (8.6)

in order to yield the best possible approximation of the nonlinear model within
a small error value ε. Therefore, the explicit representation of the FLAF error
signal e [n] is:

Input buffer Expanded buffer

 1x n M 

 1x n 

 x n

 0g n

 1g n

 2g n

 2eMg n

 1eMg n

Fig. 8.3: Functional link expansion.
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8.3. Functional Link Adaptive Filters

e [n] = d [n]− y [n]

= d [n]− gT
nwn−1

(8.7)

whose minimization depends on a proper estimate of the weights of the filter
wn. In order to find the coefficients of wn it is possible to use any adaptive
algorithm based on gradient descent rule [120]. In this work we use linear
adaptive algorithms based on stochastic gradient rule (see Chapter 4) to adapt
the filter coefficients.

8.3.4 Advantages and drawbacks of FLAF

The use of FLAF entails several attractive advantages. Firstly, FLAF has
a hugely flexible architecture due to its scalable nonlinear expansion and
to its scalable structural complexity. The former property allows to choose
a priori a suitable series of functional links according to the application of
interest. On the other hand, the latter property allows to deal with high
dimension input signals, modelling the FEB structure in order to find the right
trade-off between performance and computational complexity, according to
application requirements and disposable computational resources. Moreover,
the flexibility of FLAF architecture allows an easy integration of any a priori
knowledge of a certain nonlinear system.

Furthermore, it is well known that the introduction of high-order functions
in FLAF structure entails an increase of the learning rate [72] and a robust
generalizing ability [90]. This property becomes more solid in FLAF, compared
to FLANN [109, 72], due to the abilities to exploits the theory of linear adaptive
filters [120] by using fast learning algorithms. In addition, the use of a linear
filter provides FLAF with significant tracking capabilities that makes it suitable
for DSP applications.

However, FLAF might also show some drawbacks, mainly caused by
certain applications. A substantial difficulty might be definitely caused by
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the extreme flexibility of the architecture and in particular by the lack of a
well-defined choice of an optimum nonlinear expansion and by a possible
need of an a priori knowledge of the nonlinear system to design the expansion.
Actually FLAF performance is strictly sensitive to the choice of nonlinear
functions. Another drawback is that FLAF might incur in a biased convergence
resulting in a non-optimum estimation [83, 135]. The described drawbacks
will be certainly matter of future researches.

8.4 CHOICE OF FUNCTIONAL EXPANSION TYPE

The functional expansion process can be designed according to models
and signals involved in the application. An important choice in the FEB design
concerns the expansion type, i.e. the basis functions, or a subset of it, to assign
for each functional link. This choice mostly depends on the application and in
particular on the signals involved in the processing.

8.4.1 Choosing a proper set of functional links

The FLAF structure is a cascade of a nonlinear expansion and a linear
filter; therefore the learning of a FLAF aims at approximating a continuous
multivariate function f (xn). In FLAF, the approximating function f̂ (xn) is
represented by a set of basis functions and by the coefficients of the adaptive
filter wn. Inside the functional expansion process, a critical point is enacted by
the choice of the complete set of orthonormal basis functions and its subset,
which represents the functional links actually used. We start to analyze this
problem by using a mathematical derivation.

Let I be a compact simply connected subset of Rn and Lm (I) be the subset
of Lebesgue measurable functions f̂ : I ⊂ Rn → Rm such that the supremum
norm of f̂ , denoted as

∥∥∥f̂
∥∥∥
I

is bounded, i.e.
∥∥∥f̂

∥∥∥
I
= supxn∈I

∣∣∣f̂ (xn)
∣∣∣ < ∞.

The space of all continuous functions f̂ : I → Rm is a subset of Lm (I) and
it is denoted as Cm (I). Let BQ =

{
ϕj

}Q

j=0
be a subset of basis functions of a

119



8.4. Choice of functional expansion type

linearly independent set BQ ∈ Lm (I). Being f̂ (xn) a continuous function over
a compact set, according to the Stone-Weierstrass theorem [139], there exist
several subsets of B that can uniformly approximate f̂ (xn) by a discriminant:

f̂ (xn) =
M−1∑
i=0

Q−1∑
j=0

ϕj (x [n− i])w [n− iQ− j − 1]

= gT
nwn−1

(8.8)

such that:

max
xn∈I

∣∣∣f (xn)− f̂ (xn)
∣∣∣ < ε (8.9)

where ε is a small threshold, xn ∈ I ⊂ Rn is the FLAF input and f̂ (xn)

represents the FLAF output signal, also denoted as y [n].

8.4.2 Most popular functional link sets

The solution of equation (8.8) depends on the existence of the inverse of
the correlation matrix of the enhanced buffer. This can be assured by choosing
a proper set of basis functions, which have to be linearly independent. Basis
functions satisfying this property may be a subset of orthogonal polynomials,
like Chebyshev [91], Legendre [107] and trigonometric polynomials [103], or
just approximating functions, such as sigmoid [92] and Gaussian functions
[22]. In the following we deal with the most employed functional link bases.

Trigonometric basis functions

It has been pointed out that when trigonometric polynomials are used in
upstream, i.e. before the adaptive filtering, the weight estimate will approxi-
mate the desired impulse response in terms of multidimensional Fourier series
decomposition [154]. In particular, compared with other orthogonal basis func-
tions, trigonometric polynomials provide the best compact representation of
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any nonlinear function in the mean square sense, even for nonlinear dynamic
systems as proved in [109]. Moreover, trigonometric functions are computa-
tionally cheaper than power series-based polynomials. Due to its properties,
trigonometric polynomial functions are very popular in functional link expan-
sion, ranging from from function approximation applications [103, 72] and
channel equalization [162] to active noise control applications [125]. Func-
tional links with trigonometric functions are also used for dynamic system
identification [109].

It is possible to generalized the set of functional links using trigonometric
basis expansion in the following way:

gj [n] =




x [n− i] , j = 0

sin (pπx [n− i]) , j = 2p+ 1

cos (pπx [n− i]) , j = 2p+ 2

(8.10)

where j = 0, . . . , Q− 1 is the functional link index, and p = 0, . . . , P − 1 is the
expansion index, being P the expansion order. In (8.10) it is possible to notice
that the first element of the set of functional links, ϕ0 (x [n− i]), is the replica
of the current i-th input sample. In this way, the expanded buffer contains
both linear and nonlinear elements.

Chebyshev polynomial functions

It is well known that Chebyshev polynomial functions are endowed with
powerful nonlinear approximation capability [76]. This is the reason why their
use is widespread in different fields of application. In particular, Chebyshev
polynomials have been widely used both in pattern classification [91] and in
functional approximation [76] problems. These works pointed out that an
ANN with Chebyshev polynomial expansion has universal approximation
capability and faster convergence than a MLP network. Moreover, Cheby-
shev polynomials were also used in FLANN structure [108] for the problem
of identification of nonlinear dynamic systems in presence of input plant
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noise, showing a strong effectiveness. Furthermore, FLANN using Chebyshev
expansion has been used in channel equalization [151, 161].

The effectiveness of Chebyshev polynomials is mainly due to the fact
that the Chebyshev expansion of an input entry includes functions of the
previous functions. Moreover, Chebyshev expansion is based on power series
expansion, which may approximate a nonlinear function with a very small
error near the point of expansion. However, far from the point of expansion,
the error increases rapidly [35]. With reference to other power series of the
same degree, Chebyshev polynomials are quite computationally cheap and
more efficient [76], and this is the reason why they are frequently used for
function approximation. However, when the power series converges slowly
the computational cost dramatically increases.

Chebyshev functions are easier to compute with respect to trigonometric
polynomial functions. Taking into account the i-th input sample x [n− i], the
Chebyshev polynomial expansion can be written as:

gj [n] =




1, j = 0

x [n− i] , j = 1

2x2 [n− i]− 1, j = 2

2x [n− i] gj−1 [n]− gj−2 [n] , j = 3, . . . , Q− 1

(8.11)

in which both linear and nonlinear terms are included, similar to the trigono-
metric case (8.10).

Legendre polynomial functions

Similar to Chebyshev polynomials, the Legendre functional links provides
computational advantage while promising better performance [107]. Legendre
polynomial functions have been widely used for function approximation
by means of orthonormal ANN [159] and also functional link based ANN
[111, 107]. Legendre-based quadrature amplitude modulation (QAM) equalizer
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[107] performs better than Radial Basis Function (RBF)-based and linear FIR-
based equalizers; however, its performance is similar to that of Chebyshev-
based equalizer [110].

Considering the i-th input sample x [n− i], the Legendre polynomials are
given by:

gj [n] =




1, j = 0

x [n− i] , j = 1(
3x2 [n− i]− 1

)
/2, j = 2

{(2j − 1)x [n− i] gj−1 [n]− (j − 1) gj−2 [n]} /j, j = 3, . . . , Q− 1

(8.12)

where, as the previous two cases, both linear and nonlinear elements are
involved.

8.5 MEMORY AND MEMORYLESS FLAF

In addition to the choice of considering the type of functional link set,
another important choice in the FLAF design concerns the memory of the
input buffer, which bears on the correspondence between samples of the input
buffer and those of the expanded buffer. The choice of taking into account
some memory is strictly related to the nature of the input signal. In particular,
it depends a lot on the type of nonlinearity which deteriorates the input signal,
in particular on whether the nonlinearity is instantaneous, i.e. it is independent
from the time instant, or dynamic, i.e. the nonlinearity depends even on the
time instant.

8.5.1 Memoryless functional links

The simplest and most commonly implemented type of nonlinearity is the
memoryless (or instantaneous) one. Given an input signal x [n], the generic
output of any memoryless nonlinearity can be written as:

123



8.5. Memory and memoryless FLAF

 x n  0g n
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 1Qg n

 1eMg n j 1x n M 

Fig. 8.4: Functional expansion in memoryless FLAF.

y [n] = f (x [n]) (8.13)

where f (·) is some function which maps each input value to a unique output
value [127]. Memoryless nonlinearities are very popular since many complex
nonlinear systems can be broken down into a linear system containing a
memoryless nonlinearity. Memoryless nonlinearities require memoryless FLAF
which generates an unambiguous relation between the input buffer and the
expanded buffer, as depicted in Fig. 8.4.

In a memoryless FLAF, it is possible to define a set Φml of memoryless
functional links, each of which takes one input sample as argument, yielding
the corresponding sample of the expanded buffer. Since the memoryless set
is defined as in Subsection 8.3.2, we omit any subscript and refer to it simply
as Φ. For the first M − 1 input samples we apply the full set of memoryless
functional links Φ =

{
ϕ0 (·) ,ϕ1 (·) , . . . ,ϕQ−1 (·)

}
; however, for the M -th input

sample, we may choose to stop at j-th functional link, with j = 0, . . . , Q− 1,
or to apply the full set Φ, depending on whether we want to control the
expanded buffer length Me or not.
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8.5.2 Functional links with memory

The set of memoryless functional links described above provides a sat-
isfying approximation of a continuous multivariate function, whether the
nonlinearity is instantaneous or dynamic. However, in case of nonlinear dy-
namic systems, better results may be achieved exploiting the flexibility of the

 1x n 

φ1(·)

φQ-1(·)

 x n  0g n

 1g n

φ0(·)

 1Qg n

φQ-1(·)

 Qg nφ0(·)

 2 2Qg n

z-1

 2 1Qg n×

 2KQ Qg n ×

φQ-1(·)

   2 2KQ M Q Mg n   φ0(·)

   2 2 KQ M Q Mg n  
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   2 2 1KQ M Q Mg n   ×

 1eMg n×
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Fig. 8.5: Functional expansion in FLAF with memory.
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FEB; in particular, it is possible to add to memoryless ones further functional
links which take into account the memory of a certain dynamic nonlinearity.
We refer to the new set Φm =

{
ϕ0 (·) , . . . ,ϕQ−1 (·) ,ϕQ (·) , . . . ,ϕQK−1 (·)

}
as a

set of functional links with memory, where QK > Q is the number of functional
links with memory. A way of considering the memory of a nonlinearity is that
of taking into account the outer products of the i-th input sample with the
functional links of the previous input samples, as depicted in Fig. 8.5.

In designing the FLAF with memory, it is possible to define a memory
order K which determines the length of the additional functional links, i.e. the
depth of the outer products between the i-th input sample and the functional
links related to the previous input samples. Fig. 8.5 shows an expansion with
memory order K = 1.

8.6 MEAN-SQUARE PERFORMANCE ANALYSIS

8.6.1 Energetic approach to performance analysis

Transient and steady-state performance analyses of adaptive algorithms
may be derived considering the expectation and the mean-square of the so-
lution of its stochastic difference equation, which can be described by the
expression (8.4). In particular, such analyses are conducted considering the
asymptotic solution of the stochastic difference equation, defined as the limit,
for n → ∞, of wn. However, the presence of nonlinearities makes this ap-
proach impracticable. An alternative approach for the study of transient and
steady-state performance analyses of adaptive algorithms is based on an energy
conservation relation [120].

We start the derivation considering an important consequence of the data
analysis model depicted in Fig. 8.1. Indeed, due to the independence property
of the additive noise signal [120], it is possible to neglect v [n], thus equation
(8.3) turns into:
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Chapter 8. FLAF: A NEW CLASS OF NONLINEAR FILTERS

d [n] = uT
nw

opt (8.14)

Therefore, similarly to equation (8.15), it is possible to define the a priori
estimation error as:

ea [n] = uT
nw

opt − gT
nwn−1. (8.15)

which measures how close the nonlinear estimator gT
nwn−1 is to the desired

response d [n]. Similarly, it is possible to the define the a posteriori estimation
error as:

ep [n] = uT
nw

opt − gT
nwn. (8.16)

We consider the generic form (8.4) of the Hammerstein nonlinear adaptive
filter; multiplying both sides of (8.4) by gT

n from the left we obtain:

gT
nwn = gT

nwn−1 − µ ‖gn‖2 γ (e [n]) (8.17)

Then, subtracting (8.17) from the desired response defined in (8.14), we achieve
a relation between the a priori and a posteriori error signals:

ep [n] = ea [n]− µ ‖gn‖2 γ (e [n]) (8.18)

Equation (8.18) provides an alternative description of the stochastic equation
(8.4). Generally, it is possible to analyse the behaviour of an adaptive filter
in terms of estimation errors, ea [n] and ep [n], and in terms of misalignment
vector w̃n = wn −wopt. However, in case of Hammerstein nonlinear filter it
is not possible to take into account the information about the misalignment
vector, thus the estimation errors are the only useful quantities in order to
determine the behaviour of the filter. This is the reason why equation (8.18)
assumes a significant relevance, since it turns out to be the only relation from
which it is possible to accomplish a performance analysis. In particular, it is

127



8.6. Mean-square performance analysis

possible to derive the following behaviours:

• Steady-state behaviour, by means of the expectations E
{
|ea [n]|2

}
and

E
{
|e [n]|2

}
.

• Stability, by determining the range of values of the step-size µ over which
E
{
|ea [n]|2

}
remains bounded.

• Transient behaviour, by studying the evolution of the curve E
{
|ea [n]|2

}
.

Therefore, in order to address these behaviours we may deal with an energy
equality that relates the squared norms of the estimation errors.

8.6.2 Derivation of the energy conservation principle

The energy conservation relation does not depend on the error nonlin-
earity γ (·) [120], thus, in order to generalize this approach, it is possible to
use equations (8.18) and (8.4) to solve for γ (·), distinguishing between three
different cases.

1. xn = 0.
The degenerate case is common for any linear adaptive filter and both
Wiener and Hammerstein-based nonlinear filter. xn = 0 implies that
un = gn = 0, therefore it is obvious from (8.4) and (8.18) that wn = wn−1

and ep [n] = ea [n], thus resulting:

‖wn‖2 = ‖wn−1‖2 and |ep [n]|2 = |ea [n]|2 (8.19)

2. xn �= 0, gn = un.
As the previous case, this condition is still common for any linear and
nonlinear adaptive filter. We solve for γ (·) from (8.18), using the con-
straint gn = un, and substitute it into (8.4), obtaining:
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wn = wn−1 −
un

‖un‖2
(ea [n]− ep [n]) (8.20)

It is possible to notice that in equation (8.20) even the step-size µ is
cancelled out. Moreover, in equation (8.20) the two estimation errors
appear. In order to have an equality between the two errors, it is possible
to rearrange equation (8.20):

wn +
un

‖un‖2
ea [n] = wn−1 +

un

‖un‖2
ep [n] . (8.21)

If we evaluate the energy of both sides of (8.21), we find out the following
energy equality:

‖wn‖2 +
1

‖un‖2
|ea [n]|2 = ‖wn−1‖2 +

1

‖un‖2
|ep [n]|2 . (8.22)

in which we do not take into account irrelevant cross-terms in order to
have a fair energy relation.

3. xn �= 0, gn �= un.
The third case is not common for any adaptive filter, but it is specific to
a Hammerstein nonlinear adaptive filter. Similarly to case 2 but without
using any constraint, we solve for γ (·) from (8.18):

γ (e [n]) =
1

µ ‖gn‖2
(ea [n]− ep [n]) (8.23)

and then we substitute γ (e [n]) into (8.4), obtaining:

wn = wn−1 −
gn

‖gn‖2
(ea [n]− ep [n]) (8.24)

and the correspondent energy relation:
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‖wn‖2 +
1

‖gn‖2
|ea [n]|2 = ‖wn−1‖2 +

1

‖gn‖2
|ep [n]|2 . (8.25)

The results achieved in the three different cases can be combined together by
defining a common term µ [n]:

µ [n] =




0, xn = 0

1/ ‖un‖2 , xn �= 0, gn = un

1/ ‖gn‖2 , xn �= 0, gn �= un

(8.26)

Using (8.26), we can combine (8.19), (8.22) and (8.25) into a single identity:

‖wn‖2 + µ [n] |ea [n]|2 = ‖wn−1‖2 + µ [n] |ep [n]|2 (8.27)

which generalizes the energy conservation relation and provides a unifying
framework for the performance analysis of any linear and nonlinear adaptive
filters.

Theorem 1 Energy conservation relation. For any linear adaptive filter and for
both Wiener and Hammerstein model-based nonlinear filter, it always holds that:

‖wn‖2 + µ [n] |ea [n]|2 = ‖wn−1‖2 + µ [n] |ep [n]|2

where ea [n] = uT
nw

opt − gT
nwn−1, ep [n] = uT

nw
opt − gT

nwn, and µ [n] is defined
as in (8.26).
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