
PART IV

ROBUST ADAPTIVE FILTERING
ARCHITECTURES

—Wherever we are, what we hear is mostly noise.
When we ignore it, it disturbs us.

When we listen to it, we find it fascinating.
John Cage
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IN the previous two parts of this work we have seen interesting adaptive
algorithms for linear and nonlinear modelling of the acoustic impulse
response. Even if such algorithms have shown remarkable results not

always they provide optimal performance. In fact, they might suffer the
initial choice of parameter settings when conditions of the environment, or
in general of a system to identify, change during the adaptation, such that
the initial setting becomes unsatisfying. In the linear case, such a situation
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may occur due to a nonstationary or a change in the environment which
leads to a different choice of the step size parameter rather than the filter
length or the regularization factor. Similarly, in the nonlinear case, a kind of
nonlinearity highly varying, in amplitude or in time, may require to change
the filter design during the adaptation. Moreover, another important troubling
situation occurs when the desired signal is not known a priori, thus it is difficult
to choose whether adopting a linear filter or a nonlinear model.

In order to tackle these problems we introduce robust adaptive filtering
architectures based on the adaptive combination of filters. The idea of filters
combination is very interesting because it is possible to model a wide range of
applications [81, 67]. Using such technique it is possible to develop combined fil-
tering architectures able to change their parameter setting automatically during
the adaptation. An experimental example of combined filtering architectures
for acoustic application can be found in Chapter 11.

Moreover, the adaptive combination of filters may be used also to develop
collaborative filtering architectures able to model an impulse response apart from
its nature, whether it is linear or nonlinear. This results very useful in acoustic
applications, such as AEC, when it is not possible to know a priori if the AIR
conveys any nonlinearity, thus biasing the design choices about an acoustic
echo canceller. An experimental example of collaborative filtering architecture
for AEC can be found in Chapter 12.

However, first of all in this chapter it is necessary to introduce the adaptive
combination of filters.

10.1 ADAPTIVE COMBINATION OF FILTERS

Real-world processes comprise both linear and nonlinear components, to-
gether with deterministic (that can be precisely described by a set of equations)
and stochastic ones. In this way, models used to describe these real-world
processes can be classified with a certain degree of nonlinearity and uncer-
tainty, and described in a diagram (see Fig. 10.1). In literature only few cases
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Chapter 10. FILTERING ARCHITECTURES BASED ON ADAPTIVE COMBINATION

Fig. 10.1: Possible variety of signals spanned by a certain degree of nonlinearity and uncer-
tainty.

as the linear stochastic ARMA and chaotic models are well understood, while
real-world processes are often a combination of the previous four possibilities.
In order to automatically take into account all the previous possibilities, a
possible solution is to think to a system that automatically selects the right
subsystem working on the relative quadrant.

It is possible to generalize Fig. 10.1 to the adaptive filtering, such that each
subsystem corresponds to an adaptive filter. Using the fusion of the outputs
of adaptive filters it is possible to produce a single hybrid filtering architecture
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Fig. 10.2: Adaptive combination of transversal adaptive filters.

which provides at each time-instant the best performance among those of
individual adaptive filters [67].

Adaptive combination of filters, as depicted in Fig. 10.2, consists of multi-
ple individual adaptive subfilters operating in parallel and all feeding into a
mixing algorithm which produces the single output of the filter [5, 73]:

y [n] =

N∑
i=1

λi [n] yi [n]

=
N∑
i=1

λix
T
i,nwi,n−1

(10.1)

148
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where N is the number of filters in parallel, yi [n], are the outputs of the
individual filters, with i = 1, . . . , N , and λi [n] are the mixing parameters,
which are nothing but the coefficients of the filter on the output stage. Such
mixing parameters can be updated using an adaptive algorithm. Therefore,
the mixing coefficients are also adaptive and combine the outputs of each
subfilter based on the estimate of their current performance on the input signal
from their instantaneous output error. The mixing parameters are updated
in such a way to minimize the global MSE in output. This minimization may
be subjected to a constraint. The most used optimization constraints in the
adaptive combination of filters are the affine and the convex constraints.

The affine combination of adaptive filter is characterized by an affine constraint,
according to which:

N∑
i=1

λi [n] = 1. (10.2)

On the other side, the convex combination of filters, in addition to satisfy the
affine constraint, is characterized by the fact that all the mixing parameters
are not negative, i.e.:

N∑
i=1

λi [n] = 1 with 0 ≤ λi [n] ≤ 1, i = 1, . . . , N (10.3)

In the next section we deepen the convex combination which is quite used in
acoustic applications.

10.2 CONVEX COMBINATION OF ADAPTIVE
FILTERS

A simple form of mixing algorithm for two adaptive filters is a convex
combination. Convexity can be described as [26]:
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10.2. Convex combination of adaptive filters
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Fig. 10.3: Convexity.

λy1 + (1− λ) y2 (10.4)

where λ ∈ [0, 1]. For y1 and y2 being two points on a line, as shown in Fig.
10.3, their convex mixture (10.4) will lie on the same line between y1 and y2.

The convex combination between two adaptive filters is represented in Fig.
10.4, in which, due to the convex constraint, the mixing parameters can be
written as λ1 = λ and λ2 = 1− λ.

Therefore, in this case the output of the combined structure can be written
as:

y [n] = λy1 [n] + (1− λ) y2 [n] (10.5)

It has been showed, in [5, 6], that the convex combination method is universal
with respect to the component filters, i.e., in steady-state, it performs at least as
well as the best component filter. Furthermore, when the correlation between
the a priori errors of the components is low enough, their combination is able
to outperform both of them [6]. This is the reason why the convex combi-
nation of filters is very attractive in adaptive filtering. In fact, it is known
that on-line adaptation of certain filter parameters or even cost functions has
been attempted to influence filter performance, such as adjusting the forget-
ting factor of recursive least squares (RLS) algorithms [164] or minimizing
adjustable cost functions [25, 105]. However, a widespread use of adaptive
combination of filters is to optimally set the step size parameter. Variable step
size adaptive filters (see also Section 5.5) allow the filters to dynamically adjust
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Fig. 10.4: Convex combination of two adaptive filters.

their performance in response to conditions in the input data and error signals
[58, 75, 124]. For example, it is possible to choose a convex combination of two
adaptive filters [84, 8], one fast, i.e. with a large step size value, and one slow,
i.e. with a small step size value. These filters are combined in such a manner
that the advantages of both component filters are kept: the rapid convergence
from the fast filter, and the reduced steady-state error from the slow filter. This
scheme, that has also proven to outperform previous variable step approaches,
is an analogy of a well-known neurological fact: human brains combine fast
and coarse reactions against abrupt changes in the environment, with an early
processing at the amygdala, and more elaborated but slower responses taken
in the neocortex at a conscious level [7].
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10.3 ADAPTATION OF MIXING PARAMETERS

The adaptation of the mixing parameters follows the updating rule of
stochastic gradient adaptive algorithms (see Section 4.4). As it is possible to
see also from Fig. 10.2 and Fig. 10.4, the individual filters are independently
adapted using their own error signals, while the combination, both affine and
convex, is adapted by means of a stochastic gradient algorithm in order to
minimize the error of the overall structure. In this section we introduce the
LMS and the NLMS adaptation for the mixing parameters, however other
stochastic gradient algorithms might be adopted.

10.3.1 LMS adaptation of a convex combination of two filters

Let us consider the convex combination of two adaptive filters, as depicted
in Fig. 10.4, described by equation (10.5). Let M the length of both the adaptive
filter and let the input signal buffer xn ∈ RM . The least mean square updating
equations for the two filters result:

wi,n = wi,n−1 + µix
T
nei [n] , with i = 1, 2 (10.6)

where:

ei [n] = d [n]− yi [n] (10.7)

is the instantaneous error relative to individual filters.

Concerning the mixing parameter λ [n], the adaptation may be carried
out in convex mode imposing that 0 ≤ λ [n] ≤ 1 by means of a sigmoidal
activation function defined as:

λ [n] = sgm (a [n])

=
1

1 + e−a[n]

(10.8)
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i.e., such that λ [n] derive from the adaptation of an auxiliary parameter, a [n],
which is updated by means of a gradient descent rule, such as a [n+ 1] =

a [n] + ∆a [n]. Therefore, ∆a [n] may be computed applying a least mean square
adaptation rule:

∆a [n] = −1

2
µa

∂e2 [n]

∂a [n]

= −µae [n]
∂ (d [n]− λ [n] y1 [n]− (1− λ [n]) y2 [n])

∂λ [n]

∂λ [n]

∂a [n]

= µae [n] (y1 [n]− y2 [n])λ [n] (1− λ [n]) .

(10.9)

where µa is a step size parameter.

The benefits of employing the sigmoidal activation function are twofold.
First, it serves to keep λ [n] within the desired range [0, 1]. Second, as seen from
(10.9), the adaptation rule of a [n] reduces both the stochastic gradient noise
and the adaptation speed near λ [n] = 1 and λ [n] = 0 when the combination is
expected to perform close to one of its component filters without degradation.
Still, note that the update of a [n] in (10.9) stops whenever λ [n] is too close to
the limit values of 0 or 1. To circumvent this problem, we shall restrict the
values of a [n] to lie inside a symmetric interval [−a+, a+], which limits the
permissible range of λ [n] to [1− λ+, λ+], where λ+ = sgm (a+) is a constant
close to 1. In this way, a minimum level of adaption is always guaranteed.

10.3.2 A normalized adaptation

In [9] a normalized adaptation scheme has been introduced in order to be
more robust to changes in the filtering scenario. Considering equation (10.7),
it is possible to rewrite (10.5) as:

y [n] = y2 [n] + λ [n] (e2 [n]− e1 [n]) (10.10)

so that we can think of the overall combination scheme as a two-stage adaptive
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filter. In the first stage, the two component filters operate independently of
each other and according to their own rules, while the second layer consists of
a filter with input signal e2 [n]− e1 [n] that minimizes the overall error.

This interpretation of the combination scheme suggests that further advan-
tages could be obtained if we used a normalized LMS rule for adapting the
mixing parameter rather than standard LMS. Since e2 [n]− e1 [n] plays the role
of the input signal at this level, it makes sense to use the following adaptation
scheme:

a [n+ 1] = a [n] + µa
λ [n] (1− λ [n])

(e2 [n]− e1 [n])
2 e [n] (e2 [n]− e1 [n]) . (10.11)

In practice, however, the performance of this scheme is quite unsatisfactory
given that the instantaneous value (e2 [n]− e1 [n])

2 is a very poor estimate
of the power of the “second stage” input signal. Similar to the normalized
LMS (NLMS) algorithm with power normalization [120], better behaviour is
obtained from:

a [n+ 1] = a [n] +
µa

r [n]
λ [n] (1− λ [n]) e [n] (e2 [n]− e1 [n]) (10.12)

where:

r [n] = βr [n− 1] + (1− β) (e2 [n]− e1 [n])
2 (10.13)

is a rough (low-pass filtered) estimate of the power of the signal of interest.
Selection of the forgetting factor β is rather easy. For instance, using β = 0.9

gives a good enough approximation, and typically ensures that r [n] is adapted
faster than any component filter.
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10.4 CONCLUSIONS

In this chapter adaptive combination of filters has been introduced. In the
following two chapters we use this technique to develop robust combined
filtering architectures, for the linear modelling, and collaborative filtering
architectures, for the nonlinear modelling. Adaptive combination of filters still
remains a fertile argument for future researches since, as we have seen, the
adaptation of mixing parameters is conducted by means of stochastic adaptive
algorithms; it can be thinkable to adopt more appropriate adaptation rules,
especially for the modelling of an acoustic path.
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