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ADAPTIVE combination of filters may result very useful in setting the
critical parameters of a filter during the adaptation, as shown in
the previous chapter. However, the adaptive combination might

result non-optimal when the goal is to exploit the capabilities of different
models, or adaptive filters having different modelling tasks. In fact, in such
situations in order to reach a desired performance the contribution of each
filter might be necessary to reach a goal. This is the reason why affine and
convex constraints might be not appropriate, since the sum of the mixing
coefficients could be larger than one. In this chapter we use the adaptive
combination of filters in a different way, in order to develop not combined
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12.1. A serious problem in NAEC

but collaborative filtering architectures through the introduction of a virtual
filter. We apply such collaborative architectures for the nonlinear acoustic echo
cancellation. Experimental results show that proposed architectures show a
more robust behaviour compared with other nonlinear echo cancellers aside
from the nonlinearity level in the echo path1.

12.1 A SERIUOS PROBLEM IN NAEC

In immersive speech communications, the necessity of using NAECs is
increasingly pressing due to the growing spread of low-cost loudspeakers for
commercial hands-free communication systems, that cause significant nonlin-
earities in the echo path and lead to communication quality degradation [18],
[147]. However, when the echo path is roughly linear or contains negligible
nonlinearities an NAEC could perform worse than a conventional AEC due
to the gradient noise introduced by the nonlinear filter. Moreover, the ratio
between linear and nonlinear echo signal power is unknown a priori and it is
time-varying for nonstationary signals like speech. Thereby, it is not possible
a priori to know if an NAEC will improve or deteriorate the cancellation. This
trouble, along with the expensive computational cost of a NAEC, affects the
strategies of many companies that provide teleconferencing services, which
often choose to drop the use of nonlinear echo cancellers even at the expense
of communication quality.

A possible solution to this problem is the use of collaborative filtering
architectures. Collaborative filtering architectures are based on the convex
combination of an adaptive filter with an all-zero kernel (AZK), i.e. a virtual
kernel whose coefficients are set to zero and do not need adaptation [10].
Such convex combination is depicted in Fig. 12.1, where it is possible to see
that, while the adaptive filter is updated according to its own error signal

1The work in this chapter has been partly performed while the author was a visiting Ph.D.
student at the Department of “Teoría de la Señal y Comunicaciones”, at “Universidad Carlos
III de Madrid”.
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Fig. 12.1: Intelligent switching circuit. The structure is composed of a convex combination
between an adaptive filter and an all-zero kernel.

e1 [n], the AZK is not adapted since it is a vector with null coefficients. As a
consequence, the output signal of the AZK y2 [n] is a null contribution. This
scheme is nothing but an intelligent switch circuit. In fact, according to the cost
function chosen for the adaptation of the mixing parameter λ [n], the circuit
can automatically activate or deactivate the adaptive filter. Such switching
is performed by the convex combination: according to equation (10.5), when
the mixing parameter λ [n] is close to 1 the circuit output y [n] will bear the
adaptive filter contribution y1 [n], while when λ [n] → 0 the circuit selects the
AZK output, thus resulting in a null output signal for the overall circuit.

Adaptive schemes using such intelligent switching circuit are introduced
in [10] for NAEC employing Volterra filters and kernels, which are frequently
employed as nonlinear solutions [138]. These collaborative schemes offer im-
proved performance over the use of a single linear or nonlinear filter when the
nonlinearity level is unknown or time-varying. However, the computational
cost remains expensive due to the employment of Volterra kernels.

An effective collaborative architecture for NAEC is introduced in this
chapter using the intelligent switching circuit in combination with a functional
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link adaptive filter (FLAF) (see Chapters 8 and 9). The resulting collaborative
NAEC exploits the capabilities of FLAF-based NAECs introduced in Chapter
9 and, in addition, shows robustness against the variations of nonlinearity
degree in an acoustic path.

12.2 COLLABORATIVE FLAF

Changes proposed in SFLAF (see Section 9.2), compared to the standard
FLAF in Chapter 8, gives robustness to the flexibility of an NAEC based on
functional links, due to the possibility to make the right choice for the critical
parameters of the filter. However, some drawbacks may linger on when the
nonlinearity degree varies in time. In particular, a non-optimal filtering may
occur when the nonlinearity degree changes from a medium/high level to a
very low one, such that the nonlinearity can be considered as irrelevant. It is
well known [10, 30], indeed, that NAEC performance may result inferior than
that of a conventional linear AEC when the desired signal is not affected by
any nonlinearity, or when the nonlinearity degree is negligible. In that case,
the nonlinear filter only brings some gradient noise in the filtering process,
thus NAEC performance is subjected to a decrease. This is also the reason
why conventional AEC devices are more commercially available than NAECs.

In order to design an NAEC robust to the changes of nonlinearity degree,
we propose a collaborative architecture based on the convex combination of
adaptive filters (see Section 10.2). Using the convex combination it is possible
to exploit the capabilities of the individual filters, thus performing at least
as well as the best contributing filter. Convex combination may result very
useful in setting the critical parameters of a filter, as it is shown in [6, 126, 4].
However, convex combination might result non-optimal when the goal is to
exploit the capabilities of different models, or adaptive filters having different
modelling tasks, as in our case. As a matter of fact, the convex combination of
a nonlinear FLAF with a linear filter might not fully exploit the linear filter
capability to model the acoustic echo path when the desired signal is affected
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Fig. 12.2: Collaborative functional link adaptive filter.

by any nonlinearity.

Contrariwise, in designing an NAEC, it is desirable to enable the nonlinear
modelling only if necessary. This is the reason why the proposed collaborative
architecture exhibits a linear filtering always active and a nonlinear filtering
which can be adaptively enabled and deactivated by means of an intelligent
switching circuit, as depicted in Fig. 12.2. Such a collaborative architecture
avoids the nonlinear contribution, and consequently the introduction of any
gradient noise, when the echo path is almost linear, and the nonlinear FLAF is
unnecessary.

The collaborative FLAF-based NAEC, that we denote as CFLAF, is depicted
in Fig. 12.2, in which it is possible to notice that the overall output signal
results as:

y [n] = yL [n] + λ [n] yFL [n] (12.1)

where the mixing parameter λ [n] allows to either keep or remove the output
of the nonlinear FLAF as required by the filtering scenario. In equation (12.1)
we omit the term weighted with (1− λ [n]) and related to the AZK, as its
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contribution is null.

Due to the fact that linear and nonlinear filterings have different tasks, each
filter is updated using different error signals in order completely to exploit
the collaborative structure. In particular, the linear filter wL,n pursues the
minimization of the overall error signal e [n] = d [n] − y [n], as the output
contribution of the linear filter is always present. Differently, the nonlinear
FLAF wFL,n is updated using the local error eFL [n] from which the linear
output yL [n] is subtracted, as it is always taken into account by the linear
filtering:

eFL [n] = d [n]− (yL [n] + yFL [n]) . (12.2)

The mixing parameter λ [n] can be adapted in a convex way assuming that
0 ≤ λ [n] ≤ 1 through the adaptation of an auxiliary parameter, a [n], related
to λ [n] by means of a sigmoidal function defined as (10.8). Therefore, λ [n]

is computed adapting a [n] through a gradient descent rule as a [n+ 1] =

a [n] +∆a [n], where ∆a [n] results from a normalized least mean squares (NLMS)
adaptation (see Paragraph 10.3.2):

∆a [n] = −1

2
µa

∂e2 [n]

∂a [n]

= − µa

r [n]
e [n]

∂ (d [n]− yL [n]− λ [n] yFL [n])

∂λ [n]

∂λ [n]

∂a [n]

=
µa

r [n]
e [n] yFL [n]λ [n] (1− λ [n])

(12.3)

where

r [n] = βr [n− 1] + (1− β) y2FL [n] (12.4)

is a rough low-pass filtered estimate of the power of the signal of interest [9].
The parameter β is a smoothing factor which ensures that r [n] is adapted
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faster than any filter component. The value of a [n] is kept within [4,−4] for
practical reasons [6] (see Section 10.3).

The proposed CFLAF architecture is robust against any nonlinearity level,
since when the echo path is merely linear λ [n] converges towards 0 and the
whole scheme behaves like a purely linear filter, thus avoiding any gradient
noise from the nonlinear FLAF. On the other hand, when the echo path conveys
nonlinearities the mixing parameter approaches 1 according to the nonlinearity
level in the echo path. Note that when λ [n] = 1 the CFLAF architecture
performs like the SFLAF.

12.3 BLOCK-BASED COLLABORATIVE FLAF

A further weak spot of an FLAF-based NAEC may be a failed control over
the expanded buffer. In fact, a control in that sense can be useful when the non-
linearity degree is unknown. In the previous subsection, we saw how a CFLAF
is able to be robust when the nonlinearity degree varies from a negligible value
to a detectable one and vice-versa. However, significant differences may occur
when the nonlinearity degree varies between detectable levels with different
intensity. As a matter of fact, a high expansion order may be necessary in order
to model a high nonlinearity degree, so that the length of the expanded buffer
is sufficiently large to ensure a high number of nonlinear elements. On the
other hand, in case of detectable nonlinearity with a low/medium-intensity
a large number of coefficients may cause an overfitting plight and, therefore,
introduce some gradient noise, thus degrading filtering performance.

In order to overcome this drawback, we propose an improved CFLAF
architecture featuring a block-based convex combination [4], that we name as
block-based collaborative FLAF (BCFLAF). As we saw in the previous section,
the adaptive combination in CFLAF allows to adaptively deactivate the whole
nonlinear filtering whether not necessary. Similarly, the main idea which
underpins BCFLAF approach is that of dividing the expanded buffer into
blocks and adapting each block with its own mixing parameter, so that it is
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Fig. 12.3: Nonlinear adaptive path in a block-based collaborative FLAF.

possible to adaptively deactivate those blocks which are not useful to model
nonlinearities. Due to the fact that the nonlinear filtering strictly depends on
the length of the expanded buffer, and therefore on the number of nonlinear
elements, it is possible to divide the expanded buffer in blocks just according to
the desired accuracy. A sufficiently large number [6] of blocks may result in a
high accuracy but also in an increase of the computational cost. Therefore, the
block-based combination actually reduces the number of nonlinear elements
selected for the nonlinear filtering and therefore avoids the introduction of
any gradient noise.

The convex combination introduced in CFLAF, and described by equa-
tion (12.1), adopts the same mixing parameter for all weights. On the other
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hand, considering a number of L blocks, each one consisting of Mb = Me/L

coefficients, it is possible to express the output of the BCFLAF as:

y [n] = yL [n] +

L−1∑
l=0

∑
k∈Il

λl [n] gk [n]wFL,k [n− 1] (12.5)

where λl [n] is the mixing parameter related to the l-th block, wFL,k [n− 1]

refers to the m-th coefficients of each block, and Il = [l ·Mb, . . . , (l + 1)Mb − 1]

is the range of indices related to the coefficients of the l-th block.

The block-based combination also affects the adaptation of the nonlinear
filter wFL,n, which becomes:

wFL,n = wFL,n−1 + µFL

eFL [n]
∑L−1

l=0

∑
k∈Il λl [n] gk [n]

δFL +
∑L−1

l=0

∑
k∈Il |λl [n] gk [n]|2

(12.6)

where µFL and δFL are respectively the step size and the regularization param-
eter for the all the blocks of the nonlinear filter.

The L mixing parameters can be adapted similarly to the equation (12.3) of
the CFLAF case. Therefore, defining λl [n] = sgm (al [n]), with l = 0, . . . , L− 1,
the updating rule for each auxiliary parameter is given by:

al [n+ 1] =al [n] +
µa

r [n]
e [n]λl [n] (1− λl [n])

×
L−1∑
l=0

∑
k∈Il

gk [n]wFL,k [n] .
(12.7)

A graphical representation of the nonlinear filtering carried out by BCFLAF
architecture is depicted in Fig. 12.3.
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12.4 EXPERIMENTAL RESULTS

In this section we evaluate the performance of the proposed CFLAF in
an acoustic echo cancellation scenario. We use the same experimental setup
of Section 9.3 and also the same input signals having a length of 10 seconds.
However, if the acoustic channel is nonlinear and the degree of nonlinearity
remains constant, an NAEC using the CFLAF yields the same performance
of the SFLAF, according to what said in Section 12.2. Therefore, in order to
show the advantages of the convex combination, we consider a change of
the nonlinearity level in the echo path. In fact, we start the process in linear
conditions, i.e. the nonlinearities in the AIR are neglegible so that the acoustic
path can be assumed as linear. After 5 seconds from the start of the process
we introduce a clipping nonlinearity, the same as in Section 9.3.

In these scenario conditions, we compare the performance of three acoustic
echo canceller in terms of ERLE: a conventional linear AEC, an NAEC based
on the SFLAF and an NAEC based on the CFLAF. In a first experiment we
consider the white Gaussian input and we use an NLMS algorithm to update
the filters for all the three echo cancellers. The result is depicted in Fig. 12.4
in which it is possible to see that in the first half of the process, the best
performing filter is the conventional NLMS, due to the fact that the AIR is
purely linear. In this case the SFLAF shows a worse behaviour due to the
gradient noise introduced by the nonlinear elements of the filter. However,
it is possible to notice that, for the first 5 seconds, the CFLAF displays the
same behaviour of the NLMS, and this is due to the fact that the intelligent
switching circuit inside the CFLAF detects the absence of nonlinearities and
selects the output contribution of the AZK; in this way the whole CFLAF
reduces to be a linear filter.

However, in the second half of the process the nature of the AIR turns to be
nonlinear and an immediate consequence is the performance decrease of the
NLMS in Fig. 12.4. On the other side both the SFLAF and the CFLAF exploit
the capabilities of the functional link based filtering and display better perfor-
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Linear Nonlinear

Fig. 12.4: Performance comparison in terms of ERLE between a linear, an SFLAF-based and
a CFLAF-based echo cancellers in case of white Gaussian input. All the filters are updated
using an NLMS algorithm.

mance than the linear AEC. However, due to the different initial conditions (at
second 5) the CFLAF performs better than the SFLAF. Therefore, it is possible
to state that, comparing to the NLMS and the SFLAF, the CFLAF is always
the best performing acoustic echo canceller notwithstanding the nonlinearity
degree in the echo path.

Same conclusions, even if with less evident differences, result from a
second experiment using the female speech signal as input, as it is possible to
see from Fig. 12.5. In this second experiment all the filters are updated using
an APA with a projection order of K = 3.

Let us note that in this case it is difficult to comprehend the real benefits
deriving from the collaborative architectures due to the fact that the ERLE does
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Linear Nonlinear

Fig. 12.5: Performance comparison in terms of ERLE between a linear, an SFLAF-based and
a CFLAF-based echo cancellers in case of female speech input. All the filters are updated using
an APA.

not reflect the perceived quality improvement of the speech, which is more
evident than the ERLE improvement. In the linear case this lack is plugged
by the normalized misalignment (see Section 3.4), however in the nonlinear
case it is not possible to dispose of a similar performance measure, and it is
often difficult to achieve a complete evaluation of an NAEC only using the
ERLE, even if it is the most used measure in literature for the evaluation of a
nonlinear echo canceller.
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12.5 CONCLUSIONS

In this chapter we have introduced robust acoustic echo cancellers based on
the adaptive combination of filters. In particular, we exploits the capabilities
of the convex combination to develop an intelligent switching circuit which
allows the combination of adaptive filters from different models. In this case,
we have combined a linear adaptive filter and a nonlinear adaptive filter, thus
obtaining collaborative filtering architecture that can be used for nonlinear
echo cancellation. Such collaborative architectures have shown a more robust
behaviour compared with other nonlinear echo cancellers notwithstanding
the nonlinearity level in the echo path. This result paves the way for the de-
velopment of more sophisticated architectures able to solve similar problems
both for acoustic applications and also for other kinds of application.
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